Solveeit Logo

Question

Physics Question on LCR Circuit

A capacitor of capacitance C'C', is connected across an ac source of voltage VV, given by V=V0sinωtV = V _{0} \sin \omega t The displacement current between the plates of the capacitor, would then be given by:

A

Id=V0ωCcosωtI _{ d }= V _{0} \omega C \cos \omega t

B

Id=V0ωCcosωtI_{d}=\frac{V_{0}}{\omega C} \cos \omega t

C

Id=V0ωCsinωtI _{ d }=\frac{ V _{0}}{\omega C } \sin \omega t

D

Id=V0ωCsinωtI _{ d }= V _{0} \omega C \sin \omega t

Answer

Id=V0ωCcosωtI _{ d }= V _{0} \omega C \cos \omega t

Explanation

Solution

The displacement current is given by
Id=CdVdtI _{ d }= C \frac{ dV }{ dt }
=Cddt[V0sinωt]= C \frac{ d }{ dt }\left[ V _{0} \sin \omega t \right]
=CV0ωcosωt= CV _{0} \omega \cos \omega t
Id=V0(ωC)cosωtI _{ d }= V _{0}(\omega C ) \cos \omega t