Solveeit Logo

Question

Question: A capacitor of capacitance C connected to a ideal DC battery of emf 40 V through a resistance R at t...

A capacitor of capacitance C connected to a ideal DC battery of emf 40 V through a resistance R at t = 0. It is found that potential difference across the capacitor increases by 10 V in 2 μ\mu sec.

The time after which the charge on capacitor became 50% of its maximum value is ln(4)ln(x)ln(y)μ\frac{ln(4)}{ln(x)-ln(y)}\mu sec. Find (x - y), where x and y are co-prime integers.

Answer

1

Explanation

Solution

The problem describes the charging of a capacitor in an RC circuit. The voltage across a charging capacitor at time tt is given by:

VC(t)=V0(1et/RC)V_C(t) = V_0 (1 - e^{-t/RC})

where V0V_0 is the battery emf and RCRC is the time constant (τ\tau).

  1. Determine the time constant (RC):
    Given V0=40V_0 = 40 V.
    At t=2μt = 2 \, \musec, the potential difference across the capacitor VC(2μsec)V_C(2 \, \mu\text{sec}) increases by 10 V, so VC(2μsec)=10V_C(2 \, \mu\text{sec}) = 10 V (assuming it was uncharged at t=0t=0).
    Substitute these values into the equation:

    10=40(1e2μsec/RC)10 = 40 (1 - e^{-2\, \mu\text{sec}/RC}) 1040=1e2μsec/RC\frac{10}{40} = 1 - e^{-2\, \mu\text{sec}/RC} 14=1e2μsec/RC\frac{1}{4} = 1 - e^{-2\, \mu\text{sec}/RC} e2μsec/RC=114e^{-2\, \mu\text{sec}/RC} = 1 - \frac{1}{4} e2μsec/RC=34e^{-2\, \mu\text{sec}/RC} = \frac{3}{4} Take the natural logarithm of both sides:

    2μsecRC=ln(34)-\frac{2\, \mu\text{sec}}{RC} = \ln\left(\frac{3}{4}\right) 2μsecRC=ln(3)ln(4)-\frac{2\, \mu\text{sec}}{RC} = \ln(3) - \ln(4) 2μsecRC=ln(4)ln(3)\frac{2\, \mu\text{sec}}{RC} = \ln(4) - \ln(3) From this, the time constant RCRC is:

    RC=2μsecln(4)ln(3)RC = \frac{2\, \mu\text{sec}}{\ln(4) - \ln(3)}

  2. Find the time when the charge on the capacitor becomes 50% of its maximum value:
    The charge on the capacitor at time tt is given by Q(t)=Qmax(1et/RC)Q(t) = Q_{max} (1 - e^{-t/RC}), where Qmax=CV0Q_{max} = C V_0.
    We want to find the time tt' when Q(t)=0.5QmaxQ(t') = 0.5 Q_{max}.

    Qmax(1et/RC)=0.5QmaxQ_{max} (1 - e^{-t'/RC}) = 0.5 Q_{max} 1et/RC=0.51 - e^{-t'/RC} = 0.5 et/RC=0.5e^{-t'/RC} = 0.5 et/RC=12e^{-t'/RC} = \frac{1}{2} Take the natural logarithm of both sides:

    tRC=ln(12)-\frac{t'}{RC} = \ln\left(\frac{1}{2}\right) tRC=ln(2)-\frac{t'}{RC} = -\ln(2) tRC=ln(2)\frac{t'}{RC} = \ln(2) t=RCln(2)t' = RC \ln(2)

  3. Substitute the value of RC:
    Substitute the expression for RCRC from step 1 into the equation for tt':

    t=(2μsecln(4)ln(3))ln(2)t' = \left( \frac{2\, \mu\text{sec}}{\ln(4) - \ln(3)} \right) \ln(2) t=2ln(2)ln(4)ln(3)μsect' = \frac{2 \ln(2)}{\ln(4) - \ln(3)}\, \mu\text{sec} Using the logarithm property nln(a)=ln(an)n \ln(a) = \ln(a^n), we have 2ln(2)=ln(22)=ln(4)2 \ln(2) = \ln(2^2) = \ln(4).

    t=ln(4)ln(4)ln(3)μsect' = \frac{\ln(4)}{\ln(4) - \ln(3)}\, \mu\text{sec}

  4. Compare with the given format and find (x - y):
    The given format for the time is ln(4)ln(x)ln(y)μ\frac{\ln(4)}{\ln(x)-\ln(y)}\mu sec.
    By comparing our derived expression for tt' with the given format, we can identify xx and yy:
    x=4x = 4
    y=3y = 3
    The problem states that xx and yy are co-prime integers, which 4 and 3 are (their greatest common divisor is 1).
    Finally, calculate (xy)(x - y):

    xy=43=1x - y = 4 - 3 = 1

The final answer is 1\boxed{1}.

Explanation of the solution:

  1. The voltage across a charging capacitor is VC(t)=V0(1et/RC)V_C(t) = V_0 (1 - e^{-t/RC}).
  2. Given V0=40V_0 = 40 V and VC(2μsec)=10V_C(2 \, \mu\text{sec}) = 10 V. Substitute these to find the time constant RCRC:
    10=40(1e2μsec/RC)    e2μsec/RC=3/410 = 40 (1 - e^{-2\, \mu\text{sec}/RC}) \implies e^{-2\, \mu\text{sec}/RC} = 3/4.
    Taking natural log: 2μsecRC=ln(3/4)=ln(3)ln(4)-\frac{2\, \mu\text{sec}}{RC} = \ln(3/4) = \ln(3) - \ln(4).
    So, RC=2μsecln(4)ln(3)RC = \frac{2\, \mu\text{sec}}{\ln(4) - \ln(3)}.
  3. The charge on the capacitor is Q(t)=Qmax(1et/RC)Q(t) = Q_{max} (1 - e^{-t/RC}). For the charge to be 50% of its maximum value, Q(t)=0.5QmaxQ(t') = 0.5 Q_{max}. This implies 1et/RC=0.51 - e^{-t'/RC} = 0.5, so et/RC=0.5=1/2e^{-t'/RC} = 0.5 = 1/2.
  4. Taking natural log: tRC=ln(1/2)=ln(2)-\frac{t'}{RC} = \ln(1/2) = -\ln(2). So, t=RCln(2)t' = RC \ln(2).
  5. Substitute the expression for RCRC into tt':
    t=(2μsecln(4)ln(3))ln(2)=2ln(2)ln(4)ln(3)μsect' = \left( \frac{2\, \mu\text{sec}}{\ln(4) - \ln(3)} \right) \ln(2) = \frac{2 \ln(2)}{\ln(4) - \ln(3)}\, \mu\text{sec}.
  6. Using the property 2ln(2)=ln(22)=ln(4)2 \ln(2) = \ln(2^2) = \ln(4):
    t=ln(4)ln(4)ln(3)μsect' = \frac{\ln(4)}{\ln(4) - \ln(3)}\, \mu\text{sec}.
  7. Comparing this with the given format ln(4)ln(x)ln(y)μ\frac{\ln(4)}{\ln(x)-\ln(y)}\mu sec, we find x=4x=4 and y=3y=3. These are co-prime integers.
  8. Calculate (xy)=43=1(x - y) = 4 - 3 = 1.