Solveeit Logo

Question

Physics Question on Capacitors and Capacitance

A capacitor of 10μF10 \, \mu\text{F} capacitance whose plates are separated by 10mm10 \, \text{mm} through air and each plate has area 4cm24 \, \text{cm}^2 is now filled equally with two dielectric media of K1=2K_1 = 2, K2=3K_2 = 3 respectively as shown in the figure. If new force between the plates is 8N8 \, \text{N}, the supply voltage is ____ V\text{V}.

Answer

The total capacitance CeqC_{\text{eq}} of the capacitor is the sum of the two capacitances C1C_1 and C2C_2:
Ceq=C1+C2C_{\text{eq}} = C_1 + C_2
Capacitance C1C_1 with dielectric constant K1=2K_1 = 2 is:
C1=ε0AdK1=24×10410×103μF=10μFC_1 = \frac{\varepsilon_0 A}{d} \cdot K_1 = 2 \cdot \frac{4 \times 10^{-4}}{10 \times 10^{-3}} \, \mu F = 10 \, \mu F
Capacitance C2C_2 with dielectric constant K2=3K_2 = 3 is:
C2=ε0AdK2=34×10410×103μF=15μFC_2 = \frac{\varepsilon_0 A}{d} \cdot K_2 = 3 \cdot \frac{4 \times 10^{-4}}{10 \times 10^{-3}} \, \mu F = 15 \, \mu F
Thus, the total capacitance is:
Ceq=10μF+15μF=25μFC_{\text{eq}} = 10 \, \mu F + 15 \, \mu F = 25 \, \mu F
Now, the charge on the capacitors is given by:
C1=10V,C2=1.5VC_1 = 10 \, \text{V}, \quad C_2 = 1.5 \, \text{V}
The force between the plates is:
F=Q22Aε0F = \frac{Q^2}{2A\varepsilon_0}
Substitute the values:
100V2×10122×2×104×ε0+225V2×10122×2×104×ε0=8\frac{100 V^2 \times 10^{-12}}{2 \times 2 \times 10^{-4} \times \varepsilon_0} + \frac{225 V^2 \times 10^{-12}}{2 \times 2 \times 10^{-4} \times \varepsilon_0} = 8
Thus, the supply voltage is:
325V2=8×4×104×8.85325 V^2 = 8 \times 4 \times 10^{-4} \times 8.85
V2=32×8.85×104325V^2 = \frac{32 \times 8.85 \times 10^{-4}}{325}
V=283.2×104325\therefore V = \sqrt{\frac{283.2 \times 10^{-4}}{325}}
V=0.93×102V = 0.93 \times 10^{-2}