Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A capacitor is made of two square plates each of side a'a' making a very small angle a between them, as shown in figure. The capacitance will be close to :

A

ϵ0a2d(1αa4d)\frac{\epsilon_{0}a^{2}}{d}\left(1-\frac{\alpha a}{4d}\right)

B

ϵ0a2d(1+αad)\frac{\epsilon_{0}a^{2}}{d}\left(1+\frac{\alpha a}{d}\right)

C

ϵ0a2d(1αa2d)\frac{\epsilon_{0}a^{2}}{d}\left(1-\frac{\alpha a}{2d}\right)

D

ϵ0a2d(13αa2d)\frac{\epsilon_{0}a^{2}}{d}\left(1-\frac{3\alpha a}{2d}\right)

Answer

ϵ0a2d(1αa2d)\frac{\epsilon_{0}a^{2}}{d}\left(1-\frac{\alpha a}{2d}\right)

Explanation

Solution

Assume small element dxdx at a distance xx from left end
Capacitance for small element dxdx is
dC=ε0adxd+xαdC=\frac{\varepsilon_{0}a\,dx}{d+x\,\alpha}
C=0aε0adxd+xαC=\int\limits^{a}_{{0}}\frac{\varepsilon_{0}a\,dx}{d+x\,\alpha}
=ε0aαIn(1+αad)0a=\frac{\varepsilon_{0}\,a}{\alpha}In\left(\frac{1+\alpha a}{d}\right)|^a_0 (In(1+x)xx22)\,\left(In\left(1+x\right)\approx x-\frac{x^{2}}{2}\right)
=ε0a2d(1αa2d)=\frac{\varepsilon_{0}a^{2}}{d}\left(1-\frac{\alpha a}{2d}\right)