Solveeit Logo

Question

Physics Question on Capacitance

A capacitor is made of a flat plate of area A and a second plate having a stair-like structure as shown in figure. If the area of each stair is A3\frac{A}{3} and the height is d, the capacitance of the arrangement is:
Problem Fig

A

11ε0A18d\frac{11 \varepsilon_0 A}{18 d}

B

13ε0A17d\frac{13 \varepsilon_0 A}{17 d}

C

11ε0A20d\frac{11 \varepsilon_0 A}{20 d}

D

18ε0A11d\frac{18 \varepsilon_0 A}{11 d}

Answer

11ε0A18d\frac{11 \varepsilon_0 A}{18 d}

Explanation

Solution

Step 1: Capacitor arrangement The given system consists of three capacitors connected in parallel, each having:

Area of overlap = A3\frac{A}{3}.

The distances between the plates are dd, 2d2d, and 3d3d, respectively.

Step 2: Capacitance of each section The capacitance of a parallel plate capacitor is given by:

C=ϵ0Ad.C = \frac{\epsilon_0 A}{d}.

For the three sections:
1. C1=ϵ0A3d=ϵ0A3dC_1 = \frac{\epsilon_0 A}{3d} = \frac{\epsilon_0 A}{3d},
2. C2=ϵ0A6dC_2 = \frac{\epsilon_0 A}{6d},
3. C3=ϵ0A9dC_3 = \frac{\epsilon_0 A}{9d}.

Step 3: Total capacitance Since the capacitors are in parallel, the equivalent capacitance is:

Ceq=C1+C2+C3.C_{\text{eq}} = C_1 + C_2 + C_3.

Substitute the values:

Ceq=ϵ0A3d+ϵ0A6d+ϵ0A9d.C_{\text{eq}} = \frac{\epsilon_0 A}{3d} + \frac{\epsilon_0 A}{6d} + \frac{\epsilon_0 A}{9d}.

Take the common denominator:

Ceq=ϵ0Ad(13+16+19).C_{\text{eq}} = \frac{\epsilon_0 A}{d} \left( \frac{1}{3} + \frac{1}{6} + \frac{1}{9} \right).

Simplify the fraction:

13+16+19=6+3+218=1118.\frac{1}{3} + \frac{1}{6} + \frac{1}{9} = \frac{6 + 3 + 2}{18} = \frac{11}{18}.

Thus:

Ceq=ϵ0Ad1118.C_{\text{eq}} = \frac{\epsilon_0 A}{d} \cdot \frac{11}{18}.

Final Answer: Ceq=11ϵ0A18d.C_{\text{eq}} = \frac{11 \epsilon_0 A}{18d}.