Solveeit Logo

Question

Question: A capacitor is formed by two square metal-plates of edge separated by a distance \(d\). Dielectrics ...

A capacitor is formed by two square metal-plates of edge separated by a distance dd. Dielectrics of dielectric constants K1K_1 and K2K _ 2 are filled in the gap as shown in the figure. Find the capacitance.

Explanation

Solution

The given capacitor can be considered as two capacitors connected in series. Take an elementary section of the given capacitor and then apply the formula of capacitance C=Kε0AdC = \dfrac{{K{\varepsilon _0}A}}{d} to find the elementary capacitances of upper part and lower part. Apply the formula 1C=1C1+1C2\dfrac{1}{C} = \dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} for series connection. Integrate the elementary capacitance over the whole region to get total capacitance of the given capacitor.

Complete step by step answer:
It is given that the edge of the two square metal-plates is aa. The distance between the metal-plates is dd. The given capacitor is filled with dielectrics of dielectric constant K1{K_1} and K2{K_2}. We can consider the given capacitor as two capacitors C1{C_1} and C2{C_2} connected in series. C1{C_1} and C2{C_2}filled with dielectric constants K1{K_1} and K2{K_2} respectively. Let’s draw a diagram to understand easily.

Consider an elementary section of the given capacitor as shown in the above diagram. The upper part is dC1d{C_1} filled with K1{K_1} and the lower part is dC2d{C_2} filled with K2{K_2}.θ\theta be the angle of the lower right-angled triangle ABC as shown in the above figure.Then, the length of the lower elementary capacitor dC2d{C_2} will be xtanθx\tan \theta .The length of the upper elementary capacitor dC1d{C_1} will be dxtanθd - x\tan \theta . We know that the formula of capacitance of a parallel plates capacitor is,
C=Kε0AdC = \dfrac{{K{\varepsilon _0}A}}{d}.
Now, dC1=K1ε0(adx)dxtanθd{C_1} = \dfrac{{{K_1}{\varepsilon _0}\left( {adx} \right)}}{{d - x\tan \theta }}
And, dC2=K2ε0(adx)xtanθd{C_2} = \dfrac{{{K_2}{\varepsilon _0}\left( {adx} \right)}}{{x\tan \theta }}

Both the elementary capacitors of capacitance dC1d{C_1} and dC2d{C_2} connected in series.The effective capacitance dCdC is given by
1dC=1dC1+1dC2\dfrac{1}{{dC}} = \dfrac{1}{{d{C_1}}} + \dfrac{1}{{d{C_2}}}
Substitute the required values in the above formula.
1dC=dxtanθK1ε0adx+xtanθK2ε0adx\Rightarrow \dfrac{1}{{dC}} = \dfrac{{d - x\tan \theta }}{{{K_1}{\varepsilon _0}adx}} + \dfrac{{x\tan \theta }}{{{K_2}{\varepsilon _0}adx}}
Simplify the above equation
1dC=K2(dxtanθ)+K1(xtanθ)K1K2aε0dx\Rightarrow \dfrac{1}{{dC}} = \dfrac{{{K_2}\left( {d - x\tan \theta } \right) + {K_1}\left( {x\tan \theta } \right)}}{{{K_1}{K_2}a{\varepsilon _0}dx}}
1dC=K2d+(K1K2)xtanθK1K2aε0dx\Rightarrow \dfrac{1}{{dC}} = \dfrac{{{K_2}d + \left( {{K_1} - {K_2}} \right)x\tan \theta }}{{{K_1}{K_2}a{\varepsilon _0}dx}}
dC=K1K2aε0dxK2d+(K1K2)xtanθ\Rightarrow dC = \dfrac{{{K_1}{K_2}a{\varepsilon _0}dx}}{{{K_2}d + \left( {{K_1} - {K_2}} \right)x\tan \theta }}

Now integrate the above equation over the whole region to obtain the total capacitance.
0CdC=0aK1K2aε0K2d+(K1K2)xtanθdx\int_0^C {dC} = \int_0^a {\dfrac{{{K_1}{K_2}a{\varepsilon _0}}}{{{K_2}d + \left( {{K_1} - {K_2}} \right)x\tan \theta }}dx}
C=K1K2aε00a1K2d+(K1K2)xtanθdx\Rightarrow C = {K_1}{K_2}a{\varepsilon _0}\int_0^a {\dfrac{1}{{{K_2}d + \left( {{K_1} - {K_2}} \right)x\tan \theta }}dx}
We know the formula of integration dxAx+B=1AlnAx+B+C\int {\dfrac{{dx}}{{Ax + B}} = \dfrac{1}{A}\ln \left| {Ax + B} \right|} + C. We got,
C=K1K2aε0(K1K2)tanθ[lnK2d+(K1K2)xtanθ]0a\Rightarrow C = \dfrac{{{K_1}{K_2}a{\varepsilon _0}}}{{\left( {{K_1} - {K_2}} \right)\tan \theta }}\left[ {\ln \left| {{K_2}d + \left( {{K_1} - {K_2}} \right)x\tan \theta } \right|} \right]_0^a
Further simplify. We got,
C=K1K2aε0(K1K2)tanθ[lnK2d+(K1K2)atanθlnK2d]\Rightarrow C = \dfrac{{{K_1}{K_2}a{\varepsilon _0}}}{{\left( {{K_1} - {K_2}} \right)\tan \theta }}\left[ {\ln \left| {{K_2}d + \left( {{K_1} - {K_2}} \right)a\tan \theta } \right| - \ln \left| {{K_2}d} \right|} \right]

From the above figure, in the right-angled triangle ABC, tanθ=da\tan \theta = \dfrac{d}{a}
C=K1K2a2ε0(K1K2)[lnK2d+(K1K2)dlnK2d]\Rightarrow C = \dfrac{{{K_1}{K_2}{a^2}{\varepsilon _0}}}{{\left( {{K_1} - {K_2}} \right)}}\left[ {\ln \left| {{K_2}d + \left( {{K_1} - {K_2}} \right)d} \right| - \ln \left| {{K_2}d} \right|} \right]
C=K1K2a2ε0(K1K2)[lnK1dlnK2d]\Rightarrow C = \dfrac{{{K_1}{K_2}{a^2}{\varepsilon _0}}}{{\left( {{K_1} - {K_2}} \right)}}\left[ {\ln \left| {{K_1}d} \right| - \ln \left| {{K_2}d} \right|} \right]
Also, we know the logarithmic formula lnAlnB=ln(AB)\ln A - \ln B = \ln \left( {\dfrac{A}{B}} \right)
C=K1K2a2ε0(K1K2)(lnK1dK2d)\Rightarrow C = \dfrac{{{K_1}{K_2}{a^2}{\varepsilon _0}}}{{\left( {{K_1} - {K_2}} \right)}}\left( {\ln \left| {\dfrac{{{K_1}d}}{{{K_2}d}}} \right|} \right)
C=K1K2a2ε0(K1K2)(lnK1K2)\therefore C = \dfrac{{{K_1}{K_2}{a^2}{\varepsilon _0}}}{{\left( {{K_1} - {K_2}} \right)}}\left( {\ln \left| {\dfrac{{{K_1}}}{{{K_2}}}} \right|} \right)

Hence, the capacitance of the given capacitor is K1K2a2ε0(K1K2)(lnK1K2)\dfrac{{{K_1}{K_2}{a^2}{\varepsilon _0}}}{{\left( {{K_1} - {K_2}} \right)}}\left( {\ln \left| {\dfrac{{{K_1}}}{{{K_2}}}} \right|} \right).

Note: Many students are confused as to why the given capacitor is considered as two capacitors connected in series, not in parallel. Well, look at the following figure to clear confusion.

If a capacitor of capacitance CC filled with dielectrics of dielectric constant K1{K_1}, K2{K_2}, K3{K_3} as shown in the above figure, then the original capacitor can be considered as three different capacitors connected in parallel. It is because the voltages across each dielectric are the same.

Now see the above figure. Since the voltages across each dielectric are different, the original capacitor can be considered as three different capacitors connected in series.