Solveeit Logo

Question

Question: A capacitor is formed by two square metal-plate of edge a, separated by a distance d. Dielectric of ...

A capacitor is formed by two square metal-plate of edge a, separated by a distance d. Dielectric of dielectric constant K1& K2 are filled in the gap as shown in the fig. Find the capacitance of the system-

A

ε0a2K1K2(K1K2)d\frac{\varepsilon_{0}a^{2}K_{1}K_{2}}{(K_{1}–K_{2})d}ln K1K2\frac{K_{1}}{K_{2}}

B

ε0a2K1K2(K2K1)d\frac{\varepsilon_{0}a^{2}K_{1}K_{2}}{(K_{2}–K_{1})d}ln K2K1\frac{K_{2}}{K_{1}}

C

ε0a2K1(K1K2)d\frac{\varepsilon_{0}a^{2}K_{1}}{(K_{1}–K_{2})d} ln K1K2\frac{K_{1}}{K_{2}}

D

ε0a2K2(K2K1)d\frac{\varepsilon_{0}a^{2}K_{2}}{(K_{2}–K_{1})d}ln K2K1\frac{K_{2}}{K_{1}}

Answer

ε0a2K1K2(K1K2)d\frac{\varepsilon_{0}a^{2}K_{1}K_{2}}{(K_{1}–K_{2})d}ln K1K2\frac{K_{1}}{K_{2}}

Explanation

Solution

Q = ̃ y = xda\frac { \mathrm { xd } } { \mathrm { a } }

dC1 = ε0 K1(adx)dxda\frac { \varepsilon _ { 0 } \mathrm {~K} _ { 1 } ( \mathrm { adx } ) } { \mathrm { d } - \frac { \mathrm { xd } } { \mathrm { a } } } , dC2 =

\ = 1dC1\frac { 1 } { \mathrm { dC } _ { 1 } } + 1dC2\frac { 1 } { \mathrm { dC } _ { 2 } }

= +

=

= [K2+x/a(K1K2)K1 K2]\left[ \frac { \mathrm { K } _ { 2 } + \mathrm { x } / \mathrm { a } \left( \mathrm { K } _ { 1 } - \mathrm { K } _ { 2 } \right) } { \mathrm { K } _ { 1 } \mathrm {~K} _ { 2 } } \right]

dC =

\ C==

C = log (K1/K2)