Solveeit Logo

Question

Question: A capacitor is composed of three parallel conducting plates. All three plates are of same area A. Th...

A capacitor is composed of three parallel conducting plates. All three plates are of same area A. The first pair of plates are kept a distance d1 apart and the space between them is filled with a medium of a dielectric ε1. The corresponding data for the second pair are d2 and ε2 respectively. What is the surface charged density on the middle plate-

A

ε0 V[ε1 d1+ε2 d2]\varepsilon _ { 0 } \mathrm {~V} \left[ \frac { \varepsilon _ { 1 } } { \mathrm {~d} _ { 1 } } + \frac { \varepsilon _ { 2 } } { \mathrm {~d} _ { 2 } } \right]

B

ε0 V[ε1 d1+ε2 d2]- \varepsilon _ { 0 } \mathrm {~V} \left[ \frac { \varepsilon _ { 1 } } { \mathrm {~d} _ { 1 } } + \frac { \varepsilon _ { 2 } } { \mathrm {~d} _ { 2 } } \right]

C

0V [ε1 d1+ε2 d2]\left[ \frac { \varepsilon _ { 1 } } { \mathrm {~d} _ { 1 } } + \frac { \varepsilon _ { 2 } } { \mathrm {~d} _ { 2 } } \right]

D

2ε0 V[ε1 d1+ε2 d2]- 2 \varepsilon _ { 0 } \mathrm {~V} \left[ \frac { \varepsilon _ { 1 } } { \mathrm {~d} _ { 1 } } + \frac { \varepsilon _ { 2 } } { \mathrm {~d} _ { 2 } } \right]

Answer

ε0 V[ε1 d1+ε2 d2]\varepsilon _ { 0 } \mathrm {~V} \left[ \frac { \varepsilon _ { 1 } } { \mathrm {~d} _ { 1 } } + \frac { \varepsilon _ { 2 } } { \mathrm {~d} _ { 2 } } \right]

Explanation

Solution

Total charge on 2 and 2' plate

=

σ  = ε0 V[ε1 d1+ε2 d2]\varepsilon _ { 0 } \mathrm {~V} \left[ \frac { \varepsilon _ { 1 } } { \mathrm {~d} _ { 1 } } + \frac { \varepsilon _ { 2 } } { \mathrm {~d} _ { 2 } } \right]