Solveeit Logo

Question

Question: A capacitor is composed of three parallel conducting plates. All three plates are of same area A. Th...

A capacitor is composed of three parallel conducting plates. All three plates are of same area A. The first pair of plates are kept a distance d1 apart and the space between them is filled with a medium of a dielectric e1. The corresponding data for the second pair are d2&e2 respectively. What is the surface charge density on the middle plate?

A

ε0 V[ε1 d1+ε2 d2]\varepsilon _ { 0 } \mathrm {~V} \left[ \frac { \varepsilon _ { 1 } } { \mathrm {~d} _ { 1 } } + \frac { \varepsilon _ { 2 } } { \mathrm {~d} _ { 2 } } \right]

B

ε0 V[ε1 d1+ε2 d2]- \varepsilon _ { 0 } \mathrm {~V} \left[ \frac { \varepsilon _ { 1 } } { \mathrm {~d} _ { 1 } } + \frac { \varepsilon _ { 2 } } { \mathrm {~d} _ { 2 } } \right]

C

2ε0 V[ε1 d1+ε2 d2]2 \varepsilon _ { 0 } \mathrm {~V} \left[ \frac { \varepsilon _ { 1 } } { \mathrm {~d} _ { 1 } } + \frac { \varepsilon _ { 2 } } { \mathrm {~d} _ { 2 } } \right]

D

2ε0 V[ε1 d1+ε2 d2]- 2 \varepsilon _ { 0 } \mathrm {~V} \left[ \frac { \varepsilon _ { 1 } } { \mathrm {~d} _ { 1 } } + \frac { \varepsilon _ { 2 } } { \mathrm {~d} _ { 2 } } \right]

Answer

ε0 V[ε1 d1+ε2 d2]\varepsilon _ { 0 } \mathrm {~V} \left[ \frac { \varepsilon _ { 1 } } { \mathrm {~d} _ { 1 } } + \frac { \varepsilon _ { 2 } } { \mathrm {~d} _ { 2 } } \right]

Explanation

Solution

Equivalent circuit

Total charge on 2 & 2' plate

= [ε1ε0 A d1+ε2ε0 A d2]V\left[ \frac { \varepsilon _ { 1 } \varepsilon _ { 0 } \mathrm {~A} } { \mathrm {~d} _ { 1 } } + \frac { \varepsilon _ { 2 } \varepsilon _ { 0 } \mathrm {~A} } { \mathrm {~d} _ { 2 } } \right] \mathrm { V }

s = e0V [ε1 d1+ε2 d2]\left[ \frac { \varepsilon _ { 1 } } { \mathrm {~d} _ { 1 } } + \frac { \varepsilon _ { 2 } } { \mathrm {~d} _ { 2 } } \right]