Solveeit Logo

Question

Question: A capacitor consists of two parallel metal plate of area A separated by a distance d. A dielectric s...

A capacitor consists of two parallel metal plate of area A separated by a distance d. A dielectric slab of area A, thickness b & dielectric constant K is placed inside the capacitor. If CK is the capacitance of capacitor with dielectric. How much K & b be restricted so that CK = 2C, where C is capacitance without dielectric-

A

K=4b2bd&d3<bdK = \frac { 4 b } { 2 b - d } \& \frac { d } { 3 } < b \leq d

B

C

K=2 b2 bd&d2b2 d\mathrm { K } = \frac { 2 \mathrm {~b} } { 2 \mathrm {~b} - \mathrm { d } } \& \frac { \mathrm { d } } { 2 } \leq \mathrm { b } \leq 2 \mathrm {~d}

D

K=2 b2 bd&d4bd\mathrm { K } = \frac { 2 \mathrm {~b} } { 2 \mathrm {~b} - \mathrm { d } } \& \frac { \mathrm { d } } { 4 } \leq \mathrm { b } \leq \mathrm { d }

Answer

Explanation

Solution

CK =

We set b = 0

CK = ε0 A d\frac { \varepsilon _ { 0 } \mathrm {~A} } { \mathrm {~d} } = C if CK = 2C

Then, = ̃ K = 2b2bd\frac { 2 b } { 2 b - d }

K > 0 & b £ d

\ K = 2b2bd\frac { 2 b } { 2 b - d } and 2b – d > 0

\ d2<bd\frac { \mathrm { d } } { 2 } < \mathrm { b } \leq \mathrm { d }

\ b > d2\frac { \mathrm { d } } { 2 }