Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A capacitor CC is fully charged with voltage V0V _{0}. After disconnecting the voltage source, it is connected in parallel with another uncharged capacitor of capacitance C2.\frac{ C }{2} . The energy loss in the process after the charge is distributed between the two capacitors is :

A

16CV02\frac{1}{6} CV _{0}^{2}

B

12CV02\frac{1}{2} CV _{0}^{2}

C

13CV02\frac{1}{3} CV _{0}^{2}

D

14CV02\frac{1}{4} CV _{0}^{2}

Answer

16CV02\frac{1}{6} CV _{0}^{2}

Explanation

Solution


CV0qC=qC/2=2qC\frac{ CV _{0}- q }{ C }=\frac{ q }{ C / 2}=\frac{2 q }{ C }
V0=3qCq=CV03V _{0}=\frac{3 q }{ C } \quad \Rightarrow q =\frac{ CV _{0}}{3}
Ui=12CV02U _{ i }=\frac{1}{2} CV _{0}^{2}
Uf=(2CV03)22C+(CV03)22(C2)U _{ f }=\frac{\left(\frac{2 CV _{0}}{3}\right)^{2}}{2 C }+\frac{\left(\frac{ CV _{0}}{3}\right)^{2}}{2\left(\frac{ C }{2}\right)}
=12CV02[49+29]=12CV02(23)=\frac{1}{2} CV _{0}^{2}\left[\frac{4}{9}+\frac{2}{9}\right]=\frac{1}{2} CV _{0}^{2}\left(\frac{2}{3}\right)
Heat loss =12CV02(23)(12CV02)=\frac{1}{2} CV _{0}^{2}-\left(\frac{2}{3}\right)\left(\frac{1}{2} CV _{0}^{2}\right)
=16CV02=\frac{1}{6} CV _{0}^{2}