Solveeit Logo

Question

Physics Question on projectile motion

A cannon ball is fired from a building of height h at the sea shore with a velocity v at an angle of a upwards from the horizontal, targeting a ship at a horizontal distance of S from the shore, as shown in the figure. If 'g' denotes the acceleration due to gravity, tan α\alpha governed by the quadratic equation is

A

g2v2tan2α+hstanα+gs2v2=0\frac{g}{2v^{2}} \tan^{2} \alpha+\frac{h}{s} \tan\alpha + \frac{gs }{2v^{2}}=0

B

g2v2tan2αhstanα+gs2v2=0\frac{g}{2v^{2}} \tan^{2} \alpha - \frac{h}{s} \tan\alpha + \frac{gs }{2v^{2}}=0

C

g2v2tan2α+tanα+gs2v2hs=0\frac{g}{2v^{2}} \tan^{2} \alpha + \tan\alpha + \frac{gs }{2v^{2}} - \frac{h}{s}=0

D

g2v2tan2αtanα+gs2v2hs=0\frac{g}{2v^{2}} \tan^{2} \alpha - \tan\alpha + \frac{gs }{2v^{2}} - \frac{h}{s}=0

Answer

g2v2tan2αtanα+gs2v2hs=0\frac{g}{2v^{2}} \tan^{2} \alpha - \tan\alpha + \frac{gs }{2v^{2}} - \frac{h}{s}=0

Explanation

Solution

Answer (d) g2v2tan2αtanα+gs2v2hs=0\frac{g}{2v^{2}} \tan^{2} \alpha - \tan\alpha + \frac{gs }{2v^{2}} - \frac{h}{s}=0