Solveeit Logo

Question

Question: A can hit a target 4 times in 5 shots, B three times in 4 shots and C twice in 3 shots. They fire a ...

A can hit a target 4 times in 5 shots, B three times in 4 shots and C twice in 3 shots. They fire a target if exactly two of them hit the target then the chance that it is C who has missed is

A

613\frac { 6 } { 13 }

B

15\frac { 1 } { 5 }

C

45\frac { 4 } { 5 }

D

415\frac { 4 } { 15 }

Answer

613\frac { 6 } { 13 }

Explanation

Solution

Let A represents the event 'A hits the target', B represents the event 'B hits the target', C represents the event 'C hits the target' and E be the event that exactly two of A, B and C hit the target.

Then P(1) = 45\frac { 4 } { 5 } , P(2) = 34\frac { 3 } { 4 } and P(3) = 23\frac { 2 } { 3 }

\ P (Cc/E)

= P(A)P(B)P(Cc)P(A)P(B)P(Cc)+P(A)P(Bc)P(C)+P(Ac)P(B)P(C)\frac { \mathrm { P } ( \mathrm { A } ) \mathrm { P } ( \mathrm { B } ) \mathrm { P } \left( \mathrm { C } ^ { \mathrm { c } } \right) } { \mathrm { P } ( \mathrm { A } ) \mathrm { P } ( \mathrm { B } ) \mathrm { P } \left( \mathrm { C } ^ { \mathrm { c } } \right) + \mathrm { P } ( \mathrm { A } ) \mathrm { P } \left( \mathrm { B } ^ { \mathrm { c } } \right) \mathrm { P } ( \mathrm { C } ) + \mathrm { P } \left( \mathrm { A } ^ { \mathrm { c } } \right) \mathrm { P } ( \mathrm { B } ) \mathrm { P } ( \mathrm { C } ) } = 613\frac { 6 } { 13 }