Solveeit Logo

Question

Physics Question on Motion in a straight line

A bullet when fired into a target loses half of its velocity after penetrating 20cm20\, cm. Further distance of penetration before it comes to rest is

A

6.66 cm

B

3.33 cm

C

12.5 cm

D

10 cm

Answer

6.66 cm

Explanation

Solution

Given, Initial velocity, U=vU=v
Final velocity, V=V2V=\frac{V}{2}
Distance, s=20cms=20 \,cm
Let, the further distance of penetration before it comes to rest be xx.
V2=U22asV^{2} =U^{2}-2 a s
(V2)2=v22a×20\left(\frac{V}{2}\right)^{2} =v^{2}-2 a \times 20
40a=v2v2440\, a =v^{2}-\frac{v^{2}}{4}
40a=3v24...(i)40\, a =\frac{3 v^{2}}{4}\,...(i)
and v2=u2+2asv^{2}=u^{2}+2 a s
v2=0+2a×(20+x)v^{2}=0+2 a \times(20+x)
v2=2×3160v2×(20+x)v^{2}=2 \times \frac{3}{160} v^{2} \times(20+x) [From E(i)]
1=380(20+x)1 =\frac{3}{80}(20+x)
803=20+x\frac{80}{3} =20+x
x=80320x =\frac{80}{3}-20
x=80603x =\frac{80-60}{3}
x=203=6.66cmx =\frac{20}{3}=6.66\, cm