Solveeit Logo

Question

Question: A bullet of mass \(m\) moving with velocity \(v\) strikes a block of mass \(M\) at rest and gets emb...

A bullet of mass mm moving with velocity vv strikes a block of mass MM at rest and gets embedded into it. The kinetic energy of the composite block will be

A

12mv2×m(m+M)\frac{1}{2}mv^{2} \times \frac{m}{(m + M)}

B

12mv2×M(m+M)\frac{1}{2}mv^{2} \times \frac{M}{(m + M)}

C

12mv2×(M+m)M\frac{1}{2}mv^{2} \times \frac{(M + m)}{M}

D

12Mv2×m(m+M)\frac{1}{2}Mv^{2} \times \frac{m}{(m + M)}

Answer

12mv2×m(m+M)\frac{1}{2}mv^{2} \times \frac{m}{(m + M)}

Explanation

Solution

By conservation of momentum,

Momentum of the bullet (mv) = momentum of the composite block (m + M)V

⇒ Velocity of composite block V=mvm+MV = \frac{mv}{m + M}

∴ Kinetic energy

}{= \frac{1}{2}mv^{2}\left( \frac{m}{m + M} \right).}$$