Solveeit Logo

Question

Physics Question on work done thermodynamics

A bullet of mass mm moving with velocity vv strikes a block of mass MM at rest and gets embedded into it. The kinetic energy of the composite block will be

A

12mv2×m(m+M)\frac{1}{2} m v^{2} \times \frac{m}{(m+M)}

B

12mv2×M(m+M)\frac{1}{-2} m v^{2} \times \frac{M}{(m+M)}

C

12mv2×(M+m)M\frac{1}{2} m v^{2} \times \frac{(M+m)}{M}

D

12Mv2×m(m+M)\frac{1}{-2} M v^{2} \times \frac{m}{(m+M)}

Answer

12mv2×m(m+M)\frac{1}{2} m v^{2} \times \frac{m}{(m+M)}

Explanation

Solution

By the law of conservation of momentum mv=(m+M)Vm v=(m+M) V V=(mm+M)v\therefore V=\left(\frac{m}{m+M}\right) v \therefore Kinetic energy of composite block Ek=12(m+M)V2E_{k}=\frac{1}{2}(m+M) V^{2} =12(m+M)m2v2(m+M)2=\frac{1}{2} \frac{(m+M) m^{2} v^{2}}{(m+M)^{2}} =12mv2(mm+M)=\frac{1}{2} m v^{2}\left(\frac{m}{m+M}\right)