Solveeit Logo

Question

Question: A bullet of mass m moving horizontally with a velocity v strikes a block of wood of mass M and gets ...

A bullet of mass m moving horizontally with a velocity v strikes a block of wood of mass M and gets embedded in the block. The block is suspended from the ceiling by a mass less string. The height to which block rises is:

A

v22g(mM+m)2\frac { v ^ { 2 } } { 2 g } \left( \frac { m } { M + m } \right) ^ { 2 }

B

v22g(M+mm)2\frac { v ^ { 2 } } { 2 g } \left( \frac { M + m } { m } \right) ^ { 2 }

C

v22g(mM)2\frac { v ^ { 2 } } { 2 g } \left( \frac { m } { M } \right) ^ { 2 }

D

v22g(Mm)2\frac { v ^ { 2 } } { 2 g } \left( \frac { M } { m } \right) ^ { 2 }

Answer

v22g(mM+m)2\frac { v ^ { 2 } } { 2 g } \left( \frac { m } { M + m } \right) ^ { 2 }

Explanation

Solution

The situation is as shown in the figure.

Let V be velocity of the block-bullet system just after collision. Then by the law of conservation of linear momentum, we get

mv=(m+M)V\mathrm { mv } = ( \mathrm { m } + \mathrm { M } ) \mathrm { V }

…..(i)

Let the block rises to a height h.

According to law of conservation of mechanical energy,

We get

12(m+M)v2=(m+M)gh\frac { 1 } { 2 } ( m + M ) v ^ { 2 } = ( m + M ) g h

h=12 g(mvm+M)2\mathrm { h } = \frac { 1 } { 2 \mathrm {~g} } \left( \frac { \mathrm { mv } } { \mathrm { m } + \mathrm { M } } \right) ^ { 2 } (Using (i))

.