Solveeit Logo

Question

Physics Question on Motion in a straight line

A bullet fired into a fixed wooden block loses half of its velocity after penetrating 40cm40\,cm. It comes to rest after penetrating a further distance of

A

223cm\frac{22}{3}cm

B

403cm\frac{40}{3}cm

C

203cm\frac{20}{3}cm

D

225cm\frac{22}{5}cm

Answer

403cm\frac{40}{3}cm

Explanation

Solution

Let initial velocity of body at point A is v, AB is 40cm.

From v2=u22as{{v}^{2}}={{u}^{2}}-2as
\Rightarrow (v2)2=v22a×40{{\left( \frac{v}{2} \right)}^{2}}={{v}^{2}}-2a\times 40
Or a=3v2320a=\frac{3{{v}^{2}}}{320}
Let on penetrating 40 cm in a wooden block, the body moves x distance from B to C.
So, for B to C u=v2,v=0u=\frac{v}{2},v=0
s=x,a=3v2320s=x,a=\frac{3{{v}^{2}}}{320} (deceleration)
\therefore (0)2=(v2)22×3v2320×x{{(0)}^{2}}={{\left( \frac{v}{2} \right)}^{2}}-2\times \frac{3{{v}^{2}}}{320}\times x
Or x=403cmx=\frac{40}{3}cm