Solveeit Logo

Question

Question: A boy can jump to a height h on ground level. What should be the radius of a sphere of density d suc...

A boy can jump to a height h on ground level. What should be the radius of a sphere of density d such that on jumping on it, he escapes out of the gravitational field of the sphere

A

[4π3Gdgh]1/2\left[ \frac { 4 \pi } { 3 } \frac { G d } { g h } \right] ^ { 1 / 2 }

B

[4π3ghGd]1/2\left[ \frac { 4 \pi } { 3 } \frac { g h } { G d } \right] ^ { 1 / 2 }

C

[34πghGd]1/2\left[ \frac { 3 } { 4 \pi } \frac { g h } { G d } \right] ^ { 1 / 2 }

D

[34πGdgh]1/2\left[ \frac { 3 } { 4 \pi } \frac { G d } { g h } \right] ^ { 1 / 2 }

Answer

[34πghGd]1/2\left[ \frac { 3 } { 4 \pi } \frac { g h } { G d } \right] ^ { 1 / 2 }

Explanation

Solution

When a boy jumps from a ground level up to height hh then its velocity of jumping v=2ghv = \sqrt { 2 g h } …..(i)

and for the given condition this will become equal to escape velocity vescape = 2GMR=2GR(43πR3d)\sqrt { \frac { 2 G M } { R } } = \sqrt { \frac { 2 G } { R } \left( \frac { 4 } { 3 } \pi R ^ { 3 } \cdot d \right) } …..(ii)

Equating (i) and (ii) R=[34πghGd]1/2R = \left[ \frac { 3 } { 4 \pi } \frac { g h } { G d } \right] ^ { 1 / 2 }.