Solveeit Logo

Question

Mathematics Question on Event

A box contains 99 tickets numbered 11 to 99 inclusive. If 33 tickets are drawn from the box one at a time, the probability that they are alternatively either {odd, even, odd} or {even, odd, even} is

A

517\frac{5}{17}

B

417\frac{4}{17}

C

516\frac{5}{16}

D

518\frac{5}{18}

Answer

518\frac{5}{18}

Explanation

Solution

No. of tickets = 9
No. of odd numbered tickets = 5
No. of even numbered tickets = 4
Required probability = P {odd, even, odd}
+ P (even, odd, even)
=5C19C1×4C18C1×4C17C1×4C19C1×5C18C1×3C17C1=\frac{^{5}C_{1}}{^{9}C_{1}}\times\frac{^{4}C_{1}}{^{8}C_{1}}\times\frac{^{4}C_{1}}{^{7}C_{1}}\times\frac{^{4}C_{1}}{^{9}C_{1}}\times\frac{^{5}C_{1}}{^{8}C_{1}}\times\frac{^{3}C_{1}}{^{7}C_{1}}
=59×48×47×49×58×37=518=\frac{5}{9}\times\frac{4}{8}\times\frac{4}{7}\times \frac{4}{9}\times \frac{5}{8}\times \frac{3}{7}= \frac{5}{18}