Solveeit Logo

Question

Mathematics Question on Conditional Probability

A box contains 3030 toys of same size in which 1010 toys are white and all the remaining toys are blue. A toy is drawn at random horn the box and it is replaced in the box after noting down its colour. If 55 toys are drawn in tills way, then the probability of getting atmost 22 white toys is

A

(69)2\left(\frac{6}{9}\right)^{2}

B

(89)2\left(\frac{8}{9}\right)^{2}

C

(79)2\left(\frac{7}{9}\right)^{2}

D

(23)5\left(\frac{2}{3}\right)^{5}

Answer

(89)2\left(\frac{8}{9}\right)^{2}

Explanation

Solution

Required probability
== No white ball ++ one white ball + two white ball
=(23)5+5C1(23)4(13)1+5C2(23)3(13)2=\left(\frac{2}{3}\right)^{5}+{ }^{5} C_{1}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{1}+{ }^{5} C_{2}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{2}
=(13)5[25+524+1023]=\left(\frac{1}{3}\right)^{5}\left[2^{5}+5 \cdot 2^{4}+10 \cdot 2^{3}\right]
=(13)5[32+80+80]=19235=64×335=\left(\frac{1}{3}\right)^{5}[32+80+80]=\frac{192}{3^{5}}=\frac{64 \times 3}{3^{5}}
=6434=8×832×32=(89)2=\frac{64}{3^{4}}=\frac{8 \times 8}{3^{2} \times 3^{2}}=\left(\frac{8}{9}\right)^{2}