Solveeit Logo

Question

Physics Question on Motion in a plane

A bomber plane is moving horizontally with a speed of 500m/s500 \,m/s and a bomb released from it, strikes the ground in 10s10 \,s. Angle at which the bomb strikes the ground is: (g=10m/s2)(g=10\,m/{{s}^{2}})

A

tan1(1){{\tan }^{-1}}(1)

B

tan1(5){{\tan }^{-1}}(5)

C

tan1(15){{\tan }^{-1}}\left( \frac{1}{5} \right)

D

sin1(15){{\sin }^{-1}}\left( \frac{1}{5} \right)

Answer

tan1(15){{\tan }^{-1}}\left( \frac{1}{5} \right)

Explanation

Solution

Let h be height of plane from the ground, then from equation of motion, we have
h=ut+12gt2h = ut + \frac{ 1}{ 2} gt^2
Since, initial velocity, u=0u = 0
h=12gt2\therefore h = \frac{ 1}{ 2} gt^2
Given t=10s,g=10ms2t = 10\, s, g = 10 \, ms^{ - 2}
h=12×10×(10)2=500m\Rightarrow h = \frac{ 1}{ 2} \times 10 \times ( 10 )^2 = 500 \, m
Also, by equation v2=u2+2gh,v^2 = u^2 + 2\,gh,
we have for u=0,v=2ghu = 0, v = \sqrt { 2 gh }
v=2×10×500=100ms1\therefore v = \sqrt{ 2 \times 10 \times 500 } = 100 \, ms^{ - 1}
Hence, tanθ= vertical velocity  horizontal velocity\tan \theta = \frac{\text{ vertical velocity }}{\text{ horizontal velocity} }
=100500=15= \frac{ 100 }{ 500 } = \frac{ 1}{ 5 }
θ=tan1(15)\Rightarrow \theta = tan^{ - 1} \left( \frac{ 1}{ 5 } \right)