Solveeit Logo

Question

Question: A bomb of mass 9kg explodes into the fragments of masses 3kg and 6kg. The velocity of mass 3kg is 16...

A bomb of mass 9kg explodes into the fragments of masses 3kg and 6kg. The velocity of mass 3kg is 16m/sec. The energy of explosion is equal to

A

384J

B

576J

C

192J

D

1152J

Answer

576J

Explanation

Solution

Conservation of momentum just before and after the impact yields

0=m1v1+m2v20 = \left| \mathrm { m } _ { 1 } \overline { \mathrm { v } } _ { 1 } + \mathrm { m } _ { 2 } \overline { \mathrm { v } } _ { 2 } \right|

m1v1=m2v2=p(\mathrm { m } _ { 1 } \mathrm { v } _ { 1 } = \mathrm { m } _ { 2 } \mathrm { v } _ { 2 } = \mathrm { p } ( say ))

⇒ Energy of explosion =

= p22 m1+p22 m2=p22 m1[1+m1 m2]\frac { \mathrm { p } ^ { 2 } } { 2 \mathrm {~m} _ { 1 } } + \frac { \mathrm { p } ^ { 2 } } { 2 \mathrm {~m} _ { 2 } } = \frac { \mathrm { p } ^ { 2 } } { 2 \mathrm {~m} _ { 1 } } \left[ 1 + \frac { \mathrm { m } _ { 1 } } { \mathrm {~m} _ { 2 } } \right]

Putting P = m1v1\mathrm { m } _ { 1 } \mathrm { v } _ { 1 } , where m1=3 kg\mathrm { m } _ { 1 } = 3 \mathrm {~kg}.

v=16 m/sec\mathrm { v } = 16 \mathrm {~m} / \mathrm { sec } .

We obtain,

KE1=p22 m1=(3×16)22×3=384 J\mathrm { KE } _ { 1 } = \frac { \mathrm { p } ^ { 2 } } { 2 \mathrm {~m} _ { 1 } } = \frac { ( 3 \times 16 ) ^ { 2 } } { 2 \times 3 } = 384 \mathrm {~J} ;

KE2=p22 m2=(3×16)22×3=192 J\mathrm { KE } _ { 2 } = \frac { \mathrm { p } ^ { 2 } } { 2 \mathrm {~m} _ { 2 } } = \frac { ( 3 \times 16 ) ^ { 2 } } { 2 \times 3 } = 192 \mathrm {~J}

The conclusion that kinetic energy of the system

E=12( m1+m2)vcm2=0\mathrm { E } = \frac { 1 } { 2 } \left( \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } \right) \mathrm { v } _ { \mathrm { cm } } ^ { 2 } = 0 is wrong