Solveeit Logo

Question

Question: A body travels uniformly a distance of (13.8 \(\pm\) 0.2) m in a time (4.0 \(\pm\) 0.3) s. Its veloc...

A body travels uniformly a distance of (13.8 ±\pm 0.2) m in a time (4.0 ±\pm 0.3) s. Its velocity with error limits is

A

(3.5 ±\pm 0.6) m s-1

B

(3.5 ±\pm 0.3) m s-1

C

(6.1 ±\pm 0.6) m s-1

D

(6.1 ±\pm 0.3) m s-1

Answer

(3.5 ±\pm 0.3) m s-1

Explanation

Solution

Here, s=(13.8±0.2)m\mathrm { s } = ( 13.8 \pm 0.2 ) \mathrm { m }

t=(4.0±0.3)s\mathrm { t } = ( 4.0 \pm 0.3 ) \mathrm { s }

\thereforeVelocity, v=st=13.84.0=3.45 ms1\mathrm { v } = \frac { \mathrm { s } } { \mathrm { t } } = \frac { 13.8 } { 4.0 } = 3.45 \mathrm {~ms} ^ { - 1 }

(Rounded off to first place of decimal

Δvv=Δss+Δtt=0.213.8+0.34.0=0.213.8×4.0=4.9413.8×4.0\therefore \frac { \Delta \mathrm { v } } { \mathrm { v } } = \frac { \Delta \mathrm { s } } { \mathrm { s } } + \frac { \Delta \mathrm { t } } { \mathrm { t } } = \frac { 0.2 } { 13.8 } + \frac { 0.3 } { 4.0 } = \frac { 0.2 } { 13.8 \times 4.0 } = \frac { 4.94 } { 13.8 \times 4.0 } =0.0895= 0.0895 Δv=v×0.0895=3.45×0.0895=0.3087\Delta \mathrm { v } = \mathrm { v } \times 0.0895 = 3.45 \times 0.0895 = 0.3087

\thereforeVelocity = (3.5±0.3)ms1( 3.5 \pm 0.3 ) \mathrm { ms } ^ { - 1 }