Solveeit Logo

Question

Physics Question on Motion in a straight line

A body travels for 15 seconds starting from rest with constant acceleration. If it travels distances S1,S2S_1,\, S_2 and S3S_3 in the first five seconds, second five seconds and next five seconds respectively, then the relation between S1,S2S_1,\, S_2 and S3S_3 is

A

S1=S2=S3S_1 = S_2 = S_3

B

5S1=3S2=S35S1_ = 3S_2 = S_3

C

S1=13S2=15S3 S_{1} = \frac{1}{3} S_{2} = \frac{1}{5}S_{3}

D

S1=15S2=13S3 S_{1} = \frac{1}{5} S_{2} = \frac{1}{3}S_{3}

Answer

S1=13S2=15S3 S_{1} = \frac{1}{3} S_{2} = \frac{1}{5}S_{3}

Explanation

Solution

Let a be uniform acceleration of the body. As S=ut+12at2=12at2(u=0)S = ut +\frac{1}{2}at^{2} = \frac{1}{2}at^{2} \quad\left(\because u = 0\right) Then, S1=12a(5)2...(i)S_{1} = \frac{1}{2}a\left(5\right)^{2}\quad...\left(i\right) S1+S2=12a(10)2...(ii)S_{1}+S_{2}= \frac{1}{2}a\left(10\right)^{2}\quad ...\left(ii\right) S1+S2+S3=12a(15)2...(iii)S_{1}+S_{2}+S_{3}= \frac{1}{2}a\left(15\right)^{2}\quad ...\left(iii\right) Subtract (i)\left(i\right) from (ii)\left(ii\right), we get (S1+S2)S1=12a(10)212a(5)2\left(S_{1}+S_{2}\right) -S_{1} = \frac{1}{2} a\left(10\right)^{2}-\frac{1}{2}a\left(5\right)^{2} S2=752a=3S1S_{2} = \frac{75}{2}a = 3S_{1}\quad (Using (i)\left(i\right)) Subtract (ii)\left(ii\right) from (iii)\left(iii\right), we get (S1+S2+S3)(S1+S2)=12a(15)212a(10)2\left(S_{1}+S_{2}+S_{3}\right)-\left(S_{1}+S_{2}\right) = \frac{1}{2}a\left(15\right)^{2} - \frac{1}{2}a\left(10\right)^{2} S3=1252a=5S1S_{3} = \frac{125}{2} a = 5S_{1}\quad (Using (i)\left(i\right)) Thus, S1=13S2=15S3S_{1} = \frac{1}{3} S_{2} = \frac{1}{5}S_{3}