Solveeit Logo

Question

Physics Question on laws of motion

A body takes time tt to reach the bottom of an inclined plane of angle θ\theta with the horizontal. If the plane is made rough, time taken now is 2t2t. The coefficient of friction of the rough surface is:

A

34tanθ\frac{3}{4}\tan \theta

B

23tanθ\frac{2}{3}\tan \theta

C

14tanθ\frac{1}{4}\tan \theta

D

12tanθ\frac{1}{2}\tan \theta

Answer

34tanθ\frac{3}{4}\tan \theta

Explanation

Solution

The free body diagram shows the various forces acting on the block. When plane is frictionless, then acceleration, a=gsinθa=g \sin \theta.
Let time taken is t1t_{1} Since body starts from rest, initial velocity u=0u=0
s=ut+12at12\therefore s=u t+\frac{1}{2} a t_{1}^{2}
s=12gsinθt12\Rightarrow s=\frac{1}{2} g \sin \theta t_{1}^{2}
t1=2sgsinθ\Rightarrow t_{1}=\sqrt{\frac{2 s}{g \sin \theta}}
When plane is made rough, then acceleration a=g(sinθμcosθ)a = g (\sin \theta-\mu \cos \theta), where μ\mu is coefficient of friction.
t2=2sg(sinθμcosθ)\therefore t_{2}=\sqrt{\frac{2 s}{g(\sin \theta-\mu \cos \theta)}}
Given, t2=2t1t_{2}=2 t_{1}
2sg(sinθμcosθ)\therefore \sqrt{\frac{2 s}{g(\sin \theta-\mu \cos \theta)}}
=22sgsinθ=2 \sqrt{\frac{2 s}{g \sin \theta}}
1sinθμcosθ=4sinθ\therefore \frac{1}{\sin \theta-\mu \cos \theta}=\frac{4}{\sin \theta}
sinθ=4sinθ4μcosθ\Rightarrow \sin \theta=4 \sin \theta-4 \mu \cos \theta
μ=34tanθ\Rightarrow \mu=\frac{3}{4} \tan \theta