Solveeit Logo

Question

Physics Question on centripetal acceleration

A body starts moving from rest with constant acceleration and covers displacement S1S_1 in the first (p1)(p - 1) seconds and S2S_2 in the first pp seconds. The displacement S1+S2S_1 + S_2 will be made in time:

A

2p22p+1s\sqrt{2p^2 - 2p + 1} \, s

B

(2p+1)s(2p + 1) \, s

C

(2p1)s(2p - 1) \, s

D

(2p22p+1)s(2p^2 - 2p + 1) \, s

Answer

2p22p+1s\sqrt{2p^2 - 2p + 1} \, s

Explanation

Solution

Step 1: Calculate S1S_1 in the First (p1)(p - 1) Seconds

Since the body starts from rest, using the formula S=12at2S = \frac{1}{2}at^2,

S1=12a(p1)2S_1 = \frac{1}{2}a(p - 1)^2

Step 2: Calculate S2S_2 in the First pp Seconds

Using the same formula for S2S_2,

S2=12ap2S_2 = \frac{1}{2}ap^2

Step 3: Total Displacement S1+S2S_1 + S_2

If S1+S2S_1 + S_2 represents the displacement in time tt, then:

S1+S2=12at2S_1 + S_2 = \frac{1}{2}at^2

Substitute S1S_1 and S2S_2 values:

12a(p1)2+12ap2=12at2\frac{1}{2}a(p - 1)^2 + \frac{1}{2}ap^2 = \frac{1}{2}at^2

Simplify by canceling 12a\frac{1}{2}a:

(p1)2+p2=t2(p - 1)^2 + p^2 = t^2

Step 4: Solve for tt

t=2p22p+1t = \sqrt{2p^2 - 2p + 1}

So, the correct answer is: 2p22p+1s\sqrt{2p^2 - 2p + 1} \, s