Solveeit Logo

Question

Question: A body starts from rest and travels a distance S with uniform acceleration, then moves uniformly a d...

A body starts from rest and travels a distance S with uniform acceleration, then moves uniformly a distance 2S and finally comes to rest after moving further 5S under uniform retardation. The ratio of the average velocity to maximum velocity is
(a) 2/5
(b) 3/5
(c) 4/7
(d) 5/7

Explanation

Solution

Use the concept of Motion In A Straight Line. Area of triangle= 12×base×height\dfrac{1}{2}\times{base}\times{height} and Area of rectangle = base×height{base}\times{height}.

Complete step by step solution:
Area of the (V–t) curve represents displacement.

S=12vmaxt1t1=2Svmax 2S=12vmaxt2t2=2Svmax 5S=12vmaxt2t3=10Svmax  S = \dfrac{1}{2}{v_{\max }}{t_1} \Rightarrow {t_1} = \dfrac{{2S}}{{{v_{\max }}}} \\\ 2S = \dfrac{1}{2}{v_{\max }}{t_2} \Rightarrow {t_2} = \dfrac{{2S}}{{{v_{\max }}}} \\\ 5S = \dfrac{1}{2}{v_{\max }}{t_2} \Rightarrow {t_3} = \dfrac{{10S}}{{{v_{\max }}}} \\\
Vavg=Total displacementTotal time{V_{avg}} = \dfrac{{{\text{Total displacement}}}}{{{\text{Total time}}}} S+2S+5S2Svmax+2Svmax+10Svmax=8S(14Svmax)=vmax47\dfrac{{S + 2S + 5S}}{{\dfrac{{2S}}{{{v_{\max }}}} + \dfrac{{2S}}{{{v_{\max }}}} + \dfrac{{10S}}{{{v_{\max }}}}}} = \dfrac{{8S}}{{\left( {\dfrac{{14S}}{{{v_{\max }}}}} \right)}} = {v_{\max }}\dfrac{4}{7}
The ratio of the average velocity to maximum velocity= vavgvmax=vmax47vmax=47\dfrac{{{v_{avg}}}}{{{v_{\max }}}} = \dfrac{{{v_{\max }}\dfrac{4}{7}}}{{{v_{\max }}}} = \dfrac{4}{7}

Correct Answer: (c) 4/7

Note: Alternative Method-
vavgvmax=Total displacement2(Total displacement during acceleration and retardation) + (Displacement During uniform velocity)\dfrac{{{v_{avg}}}}{{{v_{\max }}}} = \dfrac{{Total{\text{ }}displacement}}{{2({\text{Total displacement during acceleration and retardation) + (Displacement During uniform velocity)}}}}
vavgvmax=8S2(S+5S)+2S=814=47\therefore \dfrac{{{v_{avg}}}}{{{v_{\max }}}} = \dfrac{{8S}}{{2(S + 5S) + 2S}} = \dfrac{8}{{14}} = \dfrac{4}{7}