Solveeit Logo

Question

Question: A body of mass m<sub>1</sub> strikes a stationary body of mass m<sub>2</sub>. If the collision is el...

A body of mass m1 strikes a stationary body of mass m2. If the collision is elastic and head- on, the fraction of kinetic energy transmitted by the first body to the second body is -

A

m1m2m1+m2\frac{m_{1}m_{2}}{m_{1} + m_{2}}

B

2m1m2m1+m2\frac{2m_{1}m_{2}}{m_{1} + m_{2}}

C

4m1m2(m1+m2)2\frac{4m_{1}m_{2}}{(m_{1} + m_{2})^{2}}

D

2m1m2(m1+m2)2\frac{2m_{1}m_{2}}{(m_{1} + m_{2})^{2}}

Answer

4m1m2(m1+m2)2\frac{4m_{1}m_{2}}{(m_{1} + m_{2})^{2}}

Explanation

Solution

12\frac{1}{2}m1u2

=12m1v12\frac{1}{2}m_{1}v_{1}^{2}+12m2v22\frac{1}{2}m_{2}v_{2}^{2}

e = v2v1u\frac{v_{2} - v_{1}}{u} Ž u = v2

– v1 m1u = m1v1 + m2v2

m1u = m1v1 + m2(u + v1)

(m1 – m2)u = (m1 + m2)v1 Ž v1 = (m1m2)um1+m2\frac{\left( m_{1} - m_{2} \right)u}{m_{1} + m_{2}}

v2 = u + (m1m2)um1+m2\frac{\left( m_{1} - m_{2} \right)u}{m_{1} + m_{2}} = 2m1um1+m2\frac{2m_{1}u}{m_{1} + m_{2}} Ž KEi = 12\frac{1}{2}m1u2

KEtransfer = 12m2v22\frac{1}{2}m_{2}v_{2}^{2} =

12m24m12u2(m1+m2)2\frac{1}{2}m_{2}\frac{4m_{1}^{2}u^{2}}{(m_{1} + m_{2})^{2}}

Fraction = KEtrasnsferKEi\frac{KE_{trasnsfer}}{KE_{i}} = 4m2m1(m1+m2)2\frac{4m_{2}m_{1}}{(m_{1} + m_{2})^{2}}