Solveeit Logo

Question

Physics Question on projectile motion

A body of mass MM thrown horizontally with velocity vv from the top of the tower of height HH touches the ground at a distance of 100m100 \, \text{m} from the foot of the tower. A body of mass 2M2M thrown at a velocity v2\frac{v}{2} from the top of the tower of height 4H4H will touch the ground at a distance of \dots m\text{m}.

Answer

For the first body:
{Horizontal distance = horizontal velocity ×\times time of flight.}
The time of flight for a height HH is:
t1=2Hg.t_1 = \sqrt{\frac{2H}{g}}.
The horizontal distance for the first body is:
x1=v×t1=v×2Hg.x_1 = v \times t_1 = v \times \sqrt{\frac{2H}{g}}.
Given:
x1=100m.x_1 = 100 \, \text{m}.
For the second body:
The height is 4H4H, so the time of flight is:
t2=2(4H)g=22Hg.t_2 = \sqrt{\frac{2(4H)}{g}} = 2\sqrt{\frac{2H}{g}}.
The horizontal velocity is v2\frac{v}{2}. The horizontal distance for the second body is:
x2=v2×t2.x_2 = \frac{v}{2} \times t_2.
Substitute t2=22Hgt_2 = 2\sqrt{\frac{2H}{g}}:
x2=v2×22Hg=v×2Hg.x_2 = \frac{v}{2} \times 2 \sqrt{\frac{2H}{g}} = v \times \sqrt{\frac{2H}{g}}.
From the first case:
v×2Hg=100m.v \times \sqrt{\frac{2H}{g}} = 100 \, \text{m}.
Thus:
x2=100m.x_2 = 100 \, \text{m}.
{Final Result:}
x=100m.x = 100 \, \text{m}.

Explanation

Solution

For the first body:
{Horizontal distance = horizontal velocity ×\times time of flight.}
The time of flight for a height HH is:
t1=2Hg.t_1 = \sqrt{\frac{2H}{g}}.
The horizontal distance for the first body is:
x1=v×t1=v×2Hg.x_1 = v \times t_1 = v \times \sqrt{\frac{2H}{g}}.
Given:
x1=100m.x_1 = 100 \, \text{m}.
For the second body:
The height is 4H4H, so the time of flight is:
t2=2(4H)g=22Hg.t_2 = \sqrt{\frac{2(4H)}{g}} = 2\sqrt{\frac{2H}{g}}.
The horizontal velocity is v2\frac{v}{2}. The horizontal distance for the second body is:
x2=v2×t2.x_2 = \frac{v}{2} \times t_2.
Substitute t2=22Hgt_2 = 2\sqrt{\frac{2H}{g}}:
x2=v2×22Hg=v×2Hg.x_2 = \frac{v}{2} \times 2 \sqrt{\frac{2H}{g}} = v \times \sqrt{\frac{2H}{g}}.
From the first case:
v×2Hg=100m.v \times \sqrt{\frac{2H}{g}} = 100 \, \text{m}.
Thus:
x2=100m.x_2 = 100 \, \text{m}.
{Final Result:}
x=100m.x = 100 \, \text{m}.