Solveeit Logo

Question

Physics Question on Elastic and inelastic collisions

A body of mass m strikes another body at rest of mass m9\frac{m}{9} . Assuming the impact to be inelastic the fraction of the initial kinetic energy transformed into heat during the contact is

A

0.1

B

0.2

C

0.5

D

0.64

Answer

0.1

Explanation

Solution

The loss in kinetic energy which is transformed into heat =12(m1m2m1+m2)(u1+u2)2=\frac{1}{2}\left( \frac{{{m}_{1}}{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right){{({{u}_{1}}+{{u}_{2}})}^{2}} Here, m1=m,m2=m9,u1=u,u2=0{{m}_{1}}=m,\,{{m}_{2}}=\frac{m}{9},{{u}_{1}}=u,{{u}_{2}}=0 Loss ΔE=12(m×m9m+m9)×(u+0)2=12m10u2\Delta \Epsilon =\frac{1}{2}\left( \frac{m\times \frac{m}{9}}{m+\frac{m}{9}} \right)\times {{(u+0)}^{2}}=\frac{1}{2}\frac{m}{10}{{u}^{2}} Now, initial kinetic energy =12mu2=\frac{1}{2}m{{u}^{2}} Requiredfraction =lossin kineticenergyinitialkineticenergy\text{Required}\,\text{fraction =}\frac{\text{loss}\,\text{in kinetic}\,\text{energy}}{\text{initial}\,\text{kinetic}\,\text{energy}} =12m10u212mu2=\frac{\frac{1}{2}\frac{m}{10}{{u}^{2}}}{\frac{1}{2}m{{u}^{2}}} =110=0.1=\frac{1}{10}=0.1