Solveeit Logo

Question

Physics Question on work, energy and power

A body of mass m starts moving from rest along x-axis so that its velocity varies as v=asv = a \, \sqrt{s} where a is a constant and s is the distance covered by the body. The total work done by all the forces acting on the body in the first t seconds after the start of the motion is :

A

18ma4t2\frac{1}{8} m \, a^4 \, t^2

B

8ma4t28 \, m \, a^4 \, t^2

C

4ma4t24 \, m \, a^4 \, t^2

D

14ma4t2\frac{1}{4} \, m \, a^4 \, t^2

Answer

18ma4t2\frac{1}{8} m \, a^4 \, t^2

Explanation

Solution

Velocity of the body is given by
v=asv=a \sqrt{s}
Differentiating w.r.t. tt, we get
Acceleration, a=dvdt=a12s1/2dsdt=a12sva'=\frac{d v}{d t}=a \frac{1}{2} s^{-1 / 2} \cdot \frac{d s}{d t}=a \frac{1}{2 \sqrt{s}} \cdot v a=a2sas=a22\Rightarrow a'=\frac{a}{2 \sqrt{s}} \cdot a \sqrt{s}=\frac{a^{2}}{2}
Force on the body is F=ma=ma22F=m a'=\frac{m a^{2}}{2}
Distance covered by the body is given by
s=ut+12at2s=u t+\frac{1}{2} a' t^{2}
s=12a22t2\Rightarrow s=\frac{1}{2} \cdot \frac{a^{2}}{2} t^{2}
Work done =Force ×\times Distance =ma2212a22t2=18ma4t2=\frac{m a^{2}}{2} \cdot \frac{1}{2} \frac{a^{2}}{2} t^{2}=\frac{1}{8} m a^{4} t^{2}