Solveeit Logo

Question

Physics Question on laws of motion

A body of mass mm rests on a horizontal floor with which it has a coefficient of static friction μ\mu. It is desired to make the body move by applying a minimum possible force F\vec{F} as shown in the diagram. The values of θ\theta and FminF_{\min } shall be respectively equal to

A

tan1μμmg(1+μ2)\tan ^{-1} \mu \frac{\mu m g}{\sqrt{\left(1+\mu^{2}\right)}}

B

tan1μ,mg(1+μ2)\tan ^{-1} \mu, \frac{m g}{\sqrt{\left(1+\mu^{2}\right)}}

C

tan1μ,μmg(1μ2)\tan ^{-1} \mu, \frac{\mu m g}{\sqrt{\left(1-\mu^{2}\right)}}

D

tan1μ,mg(1μ2)\tan ^{-1} \mu, \frac{m g}{\sqrt{\left(1-\mu^{2}\right)}}

Answer

tan1μμmg(1+μ2)\tan ^{-1} \mu \frac{\mu m g}{\sqrt{\left(1+\mu^{2}\right)}}

Explanation

Solution

μ=tanθ\mu=\tan \theta
θ=tan1μ\therefore \theta=\tan ^{-1} \mu
sinθ=μ1+μ2\therefore \sin \theta=\frac{\mu}{\sqrt{1+\mu^{2}}}
and cosθ=11+μ2\cos \theta=\frac{1}{\sqrt{1+\mu^{2}}}
Fmin=μmgcosθ+sinθF_{\min }=\frac{\mu m g}{\cos \theta+\sin \theta}
=μmg11+μ2+μ21+μ2=\frac{\mu m g}{\frac{1}{\sqrt{1+\mu^{2}}}+\frac{\mu^{2}}{\sqrt{1+\mu^{2}}}}
=μmg1+μ2=\frac{\mu m g}{\sqrt{1+\mu^{2}}}