Solveeit Logo

Question

Physics Question on work, energy and power

A body of mass MM moves with velocity vv and collides elastically with another body of mass mm (M>m)(M \gg>m) at rest, then the velocity of body of mass mm is :

A

vv

B

2v\text{2v}

C

v/2\text{v/2}

D

zero

Answer

2v\text{2v}

Explanation

Solution

In an elastic collision, linear momentum and kinetic energy are conserved.
Initial momentum == Final momentum
i.e., m1u1+m2u2=m1v1+m2v2m_{1} \,u_{1}+m_{2}\, u_{2}=m_{1}\, v_{1}+m_{2} v_{2}
M×v+m×0=Mv1+mv2\therefore M \times v+m \times 0=M v_{1}+m v_{2}
or Mv=Mv1+Mv2M v=M v_{1}+M v_{2}
or M(vv1)=mv2...(i)M\left(v-v_{1}\right)=m v_{2} \,\,\,...(i)
Again kinetic energy is also conserved.
12m1u12+12m2u22=12m1v12+12m2v22\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}=\frac{1}{2} m_{1} \,v_{1}^{2}+\frac{1}{2} m_{2}\, v_{2}^{2}
Mv2+m×0=Mv12+mv22\therefore M v_{2}+m \times 0=M v_{1}^{2}+m v_{2}^{2}
or Mv2=Mv12+mv22M v^{2}=M v_{1}^{2}+m v_{2}^{2}
or M(v2v12)=mv22?(ii)M\left(v^{2}-v_{1}^{2}\right)=m v_{2}^{2} ?(i i)
Dividing E(ii) by E (i), we get
M(v2v12)M(vv1)=mv22mv2\frac{M\left(v^{2}-v_{1}^{2}\right)}{M\left(v-v_{1}\right)}=\frac{m v_{2}^{2}}{m v_{2}}
or v+v1=v2v+v_{1}=v_{2} As M>>mM>>m
so v1vv_{1} \approx v
v2=v+v=2v\therefore v_{2}=v+v=2 v
Note: The conservation of momentum and the conservation of total energy holds for all the three types of collisions, but KE conservation law holds only for perfectly elastic collision.