Solveeit Logo

Question

Question: A body of mass m kg.starts falling from a point 2R above the earth’s surface. Its kinetic energy whe...

A body of mass m kg.starts falling from a point 2R above the earth’s surface. Its kinetic energy when it has fallen to a point ‘R’ above the earth’s surface [R-Radius of earth, M-Mass of earth, G-Gravitational constant]

A

12GMmR\frac { 1 } { 2 } \frac { G M m } { R }

B

16GMmR\frac { 1 } { 6 } \frac { G M m } { R }

C

23GMmR\frac { 2 } { 3 } \frac { G M m } { R }

D

13GMmR\frac { 1 } { 3 } \frac { G M m } { R }

Answer

16GMmR\frac { 1 } { 6 } \frac { G M m } { R }

Explanation

Solution

When body starts falling toward earth’s surface its potential energy decreases so kinetic energy increases.

Increase in kinetic energy = Decrease in potential energy

Final kinetic energy – Initial kinetic energy = Initial potential energy – Final potential energy

Final kinetic energy – 0 =(GMmr1)(GMmr2)= \left( - \frac { G M m } { r _ { 1 } } \right) - \left( - \frac { G M m } { r _ { 2 } } \right)

\therefore Final kinetic energy =(GMmR+h1)(GMmR+h2)= \left( \frac { - G M m } { R + h _ { 1 } } \right) - \left( - \frac { G M m } { R + h _ { 2 } } \right) =(GMmR+2R)(GMmR+R)= \left( - \frac { G M m } { R + 2 R } \right) - \left( - \frac { G M m } { R + R } \right) =16GMmR= \frac { 1 } { 6 } \frac { G M m } { R }.