Solveeit Logo

Question

Question: A body of mass $m$ is suspended by two strings making angles $\theta_1$ and $\theta_2$ with the hori...

A body of mass mm is suspended by two strings making angles θ1\theta_1 and θ2\theta_2 with the horizontal ceiling with tensions T1T_1 and T2T_2 simultaneously. T1T_1 and T2T_2 are related by T1=3T2T_1 = \sqrt{3}T_2, the angles θ1\theta_1 and θ2\theta_2 are

A

θ1=30,θ2=60\theta_1 = 30^\circ, \theta_2 = 60^\circ

B

θ1=60,θ2=30\theta_1 = 60^\circ, \theta_2 = 30^\circ

C

θ1=45,θ2=45\theta_1 = 45^\circ, \theta_2 = 45^\circ

D

θ1=30,θ2=30\theta_1 = 30^\circ, \theta_2 = 30^\circ

Answer

6060^\circ and 3030^\circ

Explanation

Solution

For static equilibrium, the horizontal components of tensions must balance: T1cosθ1=T2cosθ2T_1 \cos \theta_1 = T_2 \cos \theta_2. The vertical components must balance the weight: T1sinθ1+T2sinθ2=mgT_1 \sin \theta_1 + T_2 \sin \theta_2 = mg. Given T1=3T2T_1 = \sqrt{3}T_2, substituting this into the horizontal equilibrium equation gives 3T2cosθ1=T2cosθ2\sqrt{3}T_2 \cos \theta_1 = T_2 \cos \theta_2, which simplifies to 3cosθ1=cosθ2\sqrt{3} \cos \theta_1 = \cos \theta_2. If we test θ1=60\theta_1 = 60^\circ, then cosθ1=1/2\cos \theta_1 = 1/2, so cosθ2=3/2\cos \theta_2 = \sqrt{3}/2, implying θ2=30\theta_2 = 30^\circ. This pair of angles satisfies the conditions.