Solveeit Logo

Question

Physics Question on Power

A body of mass m is accelerated uniformly from rest to a speed vv in a time TT. The instantaneous power delivered to the body as a function of time, is given by :

A

mv2T2t\frac{mv^{2}}{T^{2}}t

B

mv2T2t2\frac{mv^{2}}{T^{2}}t^2

C

12mv2T2t \frac{1}{2} \,\frac{mv^{2}}{T^{2}}t

D

12mv2T2t2 \frac{1}{2} \,\frac{mv^{2}}{T^{2}}t^2

Answer

mv2T2t\frac{mv^{2}}{T^{2}}t

Explanation

Solution

F=ma=mvT(a=v0T) F=ma=\frac{mv}{T}\,\left(\therefore a=\frac{v-0}{T}\right) Instantaneous power=Fv= Fv =mav=mav =mvTat=mvTvTt=\frac{mv}{T}\cdot at=\frac{mv}{T}\cdot\frac{v}{T}\cdot t =mv2T2t=\frac{mv^{2}}{T^{2}}t