Solveeit Logo

Question

Question: A body of mass m accelerates uniformly from rest to \(v_{1}\) in time \(t_{1}\). As a function of ti...

A body of mass m accelerates uniformly from rest to v1v_{1} in time t1t_{1}. As a function of time t, the instantaneous power delivered to the body is

A

mv1tt1\frac{mv_{1}t}{t_{1}}

B

mv12tt1\frac{mv_{1}^{2}t}{t_{1}}

C

mv1t2t1\frac{mv_{1}t^{2}}{t_{1}}

D

mv12tt12\frac{mv_{1}^{2}t}{t_{1}^{2}}

Answer

mv12tt12\frac{mv_{1}^{2}t}{t_{1}^{2}}

Explanation

Solution

=ma×at= m a \times a t =ma2t= m a ^ { 2 } t [as u = 0]

=m(v1t1)2t=mv12tt12= m \left( \frac { v _ { 1 } } { t _ { 1 } } \right) ^ { 2 } t = \frac { m v _ { 1 } ^ { 2 } t } { t _ { 1 } ^ { 2 } } [Asa=v1/t1]\left[ \operatorname { As } a = v _ { 1 } / t _ { 1 } \right]