Solveeit Logo

Question

Physics Question on work, energy and power

A body of mass m=102kgm=10^{-2} \, kg is moving in a medium and experiences a frictional force F=kv2F=-kv^2. Its initial speed is v0=10ms1v_0=10 \, ms^{-1}. If, after 10s10\,s, its energy is 18mv02\frac{1}{8} mv_0{^{2}}, the value of kk will be :

A

103kgm110^{-3} kg \, m^{-1}

B

103kgs110^{-3} kg \, s^{-1}

C

104kgm110^{-4} kg \, m^{-1}

D

101kgm1s110^{-1} kg \, m^{-1} s^{-1}

Answer

104kgm110^{-4} kg \, m^{-1}

Explanation

Solution

kfki=18mv0212mv02=14\frac{k_{f}}{k_{i}}=\frac{\frac{1}{8} m v_{0}^{2}}{\frac{1}{2} m v_{0}^{2}}=\frac{1}{4}
vfvi=12\frac{v_{f}}{v_{i}}=\frac{1}{2}
vf=v02v_{f}=\frac{v_{0}}{2}
kv2=mdvdt-k v^{2}=\frac{m d v}{d t}
\int_\limits{v_{0}}^{\frac{v_{0}}{2}} \frac{d v}{v^{2}}=\int_\limits{0}^{t_{0}} \frac{-k d t}{m}
[1v]v0v02=kmt0\left[-\frac{1}{v}\right]_{v_{0}}^{\frac{v_{0}}{2}}=\frac{-k}{m} t_{0}
1v02v0=kmt0\frac{1}{v_{0}}-\frac{2}{v_{0}}=-\frac{k}{m} t_{0}
1v0=kmt0-\frac{1}{v_{0}}=-\frac{k}{m} t_{0}
k=mv0t0k=\frac{m}{v_{0} t_{0}}
=10210×10=\frac{10^{-2}}{10 \times 10}
=104kgm1=10^{-4}\, kg \,m ^{-1}