Solveeit Logo

Question

Physics Question on work, energy and power

A body of mass m1m_{1} collides elastically with another body of mass m2m_{2} at rest. If the velocity of m1m_{1} after collision becomes 2/32/3 times its initial velocity, the ratio of their masses, is

A

1:51:5

B

5:15:1

C

5:25:2

D

2:52:5

Answer

5:15:1

Explanation

Solution

In elastic collision v1(m1m2m1+m2)u1+(2m2m1+m2)u2v_{1}\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) u_{1}+\left(\frac{2 m_{2}}{m_{1}+m_{2}}\right) u_{2} If the second ball is at rest, ie, u2=0u_{2}=0, then v1(m1m2m1+m2)u1v_{1}\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) u_{1} Given v1=23u1v_{1}=\frac{2}{3} u_{1} 23u1=(m1m2m1+m2)u1\frac{2}{3} u_{1}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) u_{1} 2m1+2m2=3m13m2\Rightarrow 2 m_{1}+2 m_{2}=3 m_{1}-3 m_{2} m1=5m2\Rightarrow m_{1}=5 m_{2} m1m2=51\Rightarrow \frac{m_{1}}{m_{2}}=\frac{5}{1}