Solveeit Logo

Question

Question: A body of mass 5 kg starts from the origin with an initial velocity \(\overrightarrow{u} = (30\wideh...

A body of mass 5 kg starts from the origin with an initial velocity u=(30i^+40j^)ms1\overrightarrow{u} = (30\widehat{i} + 40\widehat{j})ms^{- 1}. If constant force (6i^5j^)N( - 6\widehat{i} - 5\widehat{j})Nacts on the body, the time in which the y-component of the velocity becomes zero is :

A

5 s

B

20 s

C

40 s

D

80 s

Answer

40 s

Explanation

Solution

Here , m=5kgm = 5kg

u=(30i+40j)ms1andF=(6i5j)N\overset{\rightarrow}{u} = (30\overset{\land}{i} + 40\overset{\land}{j})ms^{- 1}and\overset{\rightarrow}{F} = ( - 6\overset{\land}{i} - 5\overset{\land}{j})N

uy=40ms1andFy=5N\therefore u_{y} = 40ms^{- 1}andF_{y} = - 5N

ay=Fym=55=1ms2a_{y} = \frac{F_{y}}{m} = \frac{- 5}{5} = - 1ms^{- 2}

vy=0v_{y} = 0

As vy=uy+aytv_{y} = u_{y} + a_{y}t $$\therefore 0 = 40 - 1 \times t

Or t=40st = 40s