Solveeit Logo

Question

Physics Question on work, energy and power

A body of mass (4m)(4m) is lying in xyx-y plane at rest. It suddenly explodes into three pieces. Two pieces, each of mass (m)(m) move perpendicular to each other with equal speeds (v)(v). The total kinetic energy generated due to explosion is

A

mv2mv^2

B

32mv2\frac{3}{2}mv^2

C

2mv22mv^2

D

4mv24mv^2

Answer

32mv2\frac{3}{2}mv^2

Explanation

Solution

Let v\overrightarrow{v} be velocity of third piece of mass 2m.
Initial momentum, pi=0\overrightarrow{p_i}=0 (As the body is at rest)
Final momentum pf=0=mci^+mvj^+2mv\overrightarrow{p_f}=0=mc\widehat{i}+mv\widehat{j}+2m\overrightarrow{v}
According to law of conservation of momentum
pi=pj\overrightarrow{p_i}=\overrightarrow{p_j}
0=mvi^+mvj^+2mv\widehat{i}+mv\widehat{j}+2m\overrightarrow{v}
v=v2i^v2j^\overrightarrow{v}=-\frac{v}{2} \widehat{i}-\frac{v}{2}\widehat{j}
The magnitude of v' is
v=(v2)2+(v2)2=v2v'=\sqrt{\bigg(-\frac{v}{2}\bigg)^2+\bigg(-\frac{v}{2}\bigg)^2}=\frac{v}{\sqrt 2}
Total kinetic energy generated due to explosion
=12mv2+12mv2+12(2m)v2=\frac{1}{2}mv^2+\frac{1}{2}mv^2+\frac{1}{2}(2m)v'^{2}
=12mv2+12mv2+12(2m)(v2)2=\frac{1}{2}mv^2+\frac{1}{2}mv^2+\frac{1}{2}(2m)\bigg(\frac{v}{\sqrt 2}\bigg)^2

=mv2+mv22=32mv2mv^2+\frac{mv^2}{2}=\frac{3}{2}mv^2