Solveeit Logo

Question

Physics Question on Newton's Laws of Motion

A body of mass 4kg4 \, \text{kg} experiences two forces F1=5i^+8j^+7k^andF2=3i^4j^3k^.\vec{F}_1 = 5\hat{i} + 8\hat{j} + 7\hat{k} \quad \text{and} \quad \vec{F}_2 = 3\hat{i} - 4\hat{j} - 3\hat{k}.The acceleration acting on the body is:

A

2i^j^k^-2\hat{i} - \hat{j} - \hat{k}

B

4i^+2j^+2k^4\hat{i} + 2\hat{j} + 2\hat{k}

C

2i^+j^+k^2\hat{i} + \hat{j} + \hat{k}

D

2i^+3j^+3k^2\hat{i} + 3\hat{j} + 3\hat{k}

Answer

2i^+j^+k^2\hat{i} + \hat{j} + \hat{k}

Explanation

Solution

Given: - Mass of the body: m=4kgm = 4 \, \text{kg} - Forces acting on the body:

F1=5i^+8j^+7k^\vec{F_1} = 5\hat{i} + 8\hat{j} + 7\hat{k} F2=3i^4j^3k^\vec{F_2} = 3\hat{i} - 4\hat{j} - 3\hat{k}

Step 1: Calculating the Net Force

The net force acting on the body is given by the vector sum of F1\vec{F_1} and F2\vec{F_2}:

Fnet=F1+F2\vec{F_{\text{net}}} = \vec{F_1} + \vec{F_2}

Substituting the given values:

Fnet=(5i^+8j^+7k^)+(3i^4j^3k^)\vec{F_{\text{net}}} = (5\hat{i} + 8\hat{j} + 7\hat{k}) + (3\hat{i} - 4\hat{j} - 3\hat{k})

Combining like terms:

Fnet=(5+3)i^+(84)j^+(73)k^\vec{F_{\text{net}}} = (5 + 3)\hat{i} + (8 - 4)\hat{j} + (7 - 3)\hat{k} Fnet=8i^+4j^+4k^\vec{F_{\text{net}}} = 8\hat{i} + 4\hat{j} + 4\hat{k}

Step 2: Calculating the Acceleration

The acceleration a\vec{a} is given by Newton’s second law:

a=Fnetm\vec{a} = \frac{\vec{F_{\text{net}}}}{m}

Substituting the values:

a=14(8i^+4j^+4k^)\vec{a} = \frac{1}{4} (8\hat{i} + 4\hat{j} + 4\hat{k}) a=2i^+j^+k^\vec{a} = 2\hat{i} + \hat{j} + \hat{k}

Conclusion:

The acceleration acting on the body is 2i^+j^+k^2\hat{i} + \hat{j} + \hat{k}.