Solveeit Logo

Question

Physics Question on laws of motion

A body of mass 2kg2\, kg travels according to the law x(t)x\left(t\right) =pt+qt2+rt3=pt+qt^{2}+rt^{3} where p=3ms1p=3 \,ms^{-1}, q=4ms2q=4\,ms^{-2} and r=5ms3r=5 \,ms^{-3}. The force acting on the body at t=2t=2 seconds is

A

136N136\,N

B

134N134\, N

C

158N158\, N

D

68N68\, N

Answer

136N136\,N

Explanation

Solution

Here, x(t)x\left(t\right) =pt+qt2+rt3=pt+qt^{2}+rt^{3} where p=3ms1p=3 \,m\,s^{-1}, q=4ms2q=4 \,m \,s^{-2}, r=5ms3r=5 \,m\, s^{-3} and m=2kgm=2 \,kg Velocity, v=dxdt=ddtv=\frac{d\,x}{d \,t}=\frac{d}{d \,t} (pt+qt2+rt3)=p+2qt+3rt2\left(pt+qt^{2}+rt^{3}\right)=p+2qt+3rt^{2} Acceleration, a=dvdta=\frac{d\,v}{d \,t} =2q+6rt=2q+6rt At t=2st=2 s, a=2a=2 (4ms2)\left(4 \,m\, s^{-2}\right) +6(5ms3)(2s)+6\left(5 \,m \,s^{-3}\right)\left(2 s\right) =8ms2+60ms2=68ms2=8 \,m \,s^{-2}+60\, m\,s^{-2}=68 \,m\, s^{-2} The force acting on the body of mass 2kg2 \,kg is F=maF=ma =(2kg)(68ms2)=\left(2 kg\right)\left(68 m s^{-2}\right) =136N=136 \,N