Solveeit Logo

Question

Question: A body of mass 2 kg moving with velocity of $\vec{v_{in}}$ = $3\hat{i}$ + $4\hat{j}$ $ms^{-1}$ enter...

A body of mass 2 kg moving with velocity of vin\vec{v_{in}} = 3i^3\hat{i} + 4j^4\hat{j} ms1ms^{-1} enters into a constant force field of 6N directed along positive z-axis. If the body remains in the field for a period of 53\frac{5}{3} seconds, then velocity of the body when it emerges from force field is.

A

3i^3\hat{i} + 4j^4\hat{j} + 5k^\sqrt{5}\hat{k}

B

4i^4\hat{i} + 3j^3\hat{j} + 5k^5\hat{k}

C

3i^3\hat{i} + 4j^4\hat{j} - 5k^5\hat{k}

D

3i^3\hat{i} + 4j^4\hat{j} + 5k^5\hat{k}

Answer

3i^+4j^+5k^3\hat{i} + 4\hat{j} + 5\hat{k}

Explanation

Solution

The problem involves calculating the final velocity of a body subjected to a constant force for a given duration.

1. Identify the given parameters:

  • Mass of the body, m=2m = 2 kg
  • Initial velocity of the body, vin=3i^+4j^\vec{v_{in}} = 3\hat{i} + 4\hat{j} ms1ms^{-1}
  • Constant force acting on the body, F=6\vec{F} = 6 N along the positive z-axis. So, F=6k^\vec{F} = 6\hat{k} N
  • Time duration for which the force acts, t=53t = \frac{5}{3} seconds

2. Calculate the acceleration of the body:

According to Newton's second law, F=ma\vec{F} = m\vec{a}. Therefore, the acceleration a=Fm\vec{a} = \frac{\vec{F}}{m}. a=6k^2=3k^\vec{a} = \frac{6\hat{k}}{2} = 3\hat{k} ms2ms^{-2}

3. Calculate the final velocity of the body:

Since the acceleration is constant, we can use the kinematic equation: vfinal=vinitial+at\vec{v_{final}} = \vec{v_{initial}} + \vec{a}t. Substitute the values: vfinal=(3i^+4j^)+(3k^)×(53)\vec{v_{final}} = (3\hat{i} + 4\hat{j}) + (3\hat{k}) \times \left(\frac{5}{3}\right) vfinal=3i^+4j^+(3×53)k^\vec{v_{final}} = 3\hat{i} + 4\hat{j} + \left(\frac{3 \times 5}{3}\right)\hat{k} vfinal=3i^+4j^+5k^\vec{v_{final}} = 3\hat{i} + 4\hat{j} + 5\hat{k} ms1ms^{-1}

The x and y components of the velocity remain unchanged because the force acts only along the z-axis, meaning there is no acceleration component in the x or y directions. Only the z-component of the velocity changes due to the applied force.

The final velocity of the body when it emerges from the force field is 3i^+4j^+5k^3\hat{i} + 4\hat{j} + 5\hat{k} ms1ms^{-1}.