Solveeit Logo

Question

Physics Question on work, energy and power

A body of mass 1 kg begins to move under the action of a time dependent force F=(2i^+3t2j^)N\vec{F} = ( 2\hat{i} + 3t^2 \hat{j} )N, where i^\hat{i} and j^\hat{j} are unit vectors along x and y axis. What power will be developed by the force at the time t ?

A

(2t2+4t4)W(2t^2 + 4t^4)W

B

(2t3+3t4)W(2t^3 + 3t^4)W

C

(2t3+3t5)W(2t^3 + 3t^5)W

D

(2t2+3t3)W(2t^2 + 3t^3)W

Answer

(2t3+3t5)W(2t^3 + 3t^5)W

Explanation

Solution

F=2ti^+3t2j^\vec{F} = 2t \hat{i} + 3 t^2 \hat{j}
mdvdt=2ti^+3t2j^m \frac{d \vec{v}}{dt} = 2 t \hat{i} + 3 t^2 \hat{j} (m = 1 kg)
0v^dv=0t(2ti^+3t2j^)dt    v=t2i^+t3j^\Rightarrow \, \int\limits^{\hat{v}}_0 d \vec{v} = \int\limits^t_0 (2t \hat{i} + 3 t^2 \hat{j}) dt \; \; \Rightarrow \, \vec{v} = t^2 \hat{i} + t^3 \hat{j}
Power =F.v=(2t3+3t5)W= \vec{F}. \vec{v} = (2 t^3 + 3t^5) W