Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A body is rotating with angular velocity ω=(3i^4j^+k^)\overrightarrow{\omega}=\left(3\hat{i}-4\hat{j}+\hat{k}\right). The linear velocity of a point having position vector r=(5i^6j^+6k^)\overrightarrow{r}=\left(5\hat{i}-6\hat{j}+6\hat{k}\right) is

A

6i^+2j^3k^6\hat{i}+2\hat{j}-3\hat{k}

B

18i^+3j^2k^18\hat{i}+3\hat{j}-2\hat{k}

C

18i^13j^+2k^-18\hat{i}-13\hat{j}+2\hat{k}

D

6i^2j^+8k^6\hat{i}-2\hat{j}+8\hat{k}

Answer

18i^13j^+2k^-18\hat{i}-13\hat{j}+2\hat{k}

Explanation

Solution

Here, ω=3i^4j^+k^\vec{\omega }=3\hat{i}-4\hat{j}+\hat{k} r=5i^6j^+6k^\overrightarrow{r}=5\hat{i}-6\hat{j}+6\hat{k} As υ=ω×r\overrightarrow{\upsilon}=\vec{\omega} \times\overrightarrow{r} =i^j^k^ 341 566=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\\ 3&-4&1\\\ 5&-6&6\end{vmatrix} =i^(24(6))+j^(518)+k^(18(20))=\hat{i} (-24-\left(-6\right))+\hat{j} \left(5-18\right)+\hat{k} (-18-\left(-20\right)) =18i^13j^+2k^=-18 \hat{i}-13\hat{j}+2\hat{k}