Solveeit Logo

Question

Question: A body is rolling down an inclined plane. If kinetic energy of rotation is 40% of kinetic energy in ...

A body is rolling down an inclined plane. If kinetic energy of rotation is 40% of kinetic energy in translatory state, then the body is a

A

Ring

B

Cylinder

C

Hollow ball

D

Solid ball

Answer

Solid ball

Explanation

Solution

Rotational kinetic energy is,

KR=12Iω2=12Mk2(vR)2\mathrm { K } _ { \mathrm { R } } = \frac { 1 } { 2 } \mathrm { I } \omega ^ { 2 } = \frac { 1 } { 2 } \mathrm { Mk } ^ { 2 } \left( \frac { \mathrm { v } } { \mathrm { R } } \right) ^ { 2 } (I=Mk2\because \mathrm { I } = \mathrm { Mk } ^ { 2 } and v = Rω\omega) =12Mv2(k2R2)= \frac { 1 } { 2 } \mathrm { Mv } ^ { 2 } \left( \frac { \mathrm { k } ^ { 2 } } { \mathrm { R } ^ { 2 } } \right)

Translational kinetic energy is,

KT=12Mv2\mathrm { K } _ { \mathrm { T } } = \frac { 1 } { 2 } \mathrm { Mv } ^ { 2 }

As per question, KR=40%kT\mathrm { K } _ { \mathrm { R } } = 40 \% \mathrm { k } _ { \mathrm { T } }

12Mv2(k2R2)=40%12Mv2\therefore \frac { 1 } { 2 } \mathrm { Mv } ^ { 2 } \left( \frac { \mathrm { k } ^ { 2 } } { \mathrm { R } ^ { 2 } } \right) = 40 \% \frac { 1 } { 2 } \mathrm { Mv } ^ { 2 } or k2R2=40100=25\frac { \mathrm { k } ^ { 2 } } { \mathrm { R } ^ { 2 } } = \frac { 40 } { 100 } = \frac { 2 } { 5 } For solid sphere, K2R2=25\frac { \mathrm { K } ^ { 2 } } { \mathrm { R } ^ { 2 } } = \frac { 2 } { 5 }

Hence, the body is solid ball.