Solveeit Logo

Question

Physics Question on projectile motion

A body is projected vertically upwards at time t=0t=0 and it is seen at a height HH at time t1t_{1} and t2t_{2} second during its flight. The maximum height attained is ( gg is acceleration due to gravity)

A

g(t2t1)28\frac{g\left(t_{2} -t_{1}\right)^{2}}{8}

B

g(t1+t2)24\frac{g\left(t_{1}+ t_{2}\right)^{2}}{4}

C

g(t1+t2)28\frac{g\left(t_{1}+ t_{2}\right)^{2}}{8}

D

g(t2t1)24\frac{g\left(t_{2} -t_{1}\right)^{2}}{4}

Answer

g(t1+t2)24\frac{g\left(t_{1}+ t_{2}\right)^{2}}{4}

Explanation

Solution

Let time taken by the body to fall from point CC to BB is tt^{'}.
Then t1+2t=t2t_{1}+2 t^{'}=t_{2}
t=(t2t12)(i)t^{'}=\left(\frac{t_{2}-t_{1}}{2}\right) \,\,\,\,\ldots( i )
Total time taken to reach point CC
T=t1+tT=t_{1}+t^{'}
=t1+t2t12=t_{1}+\frac{t_{2}-t_{1}}{2}
=2t1+t2t12=(t1+t22)=\frac{2 t_{1}+t_{2}-t_{1}}{2}=\left(\frac{t_{1}+t_{2}}{2}\right)
Maximum height attained
Hmax=12g(T)2H_{\max }=\frac{1}{2} g(T)^{2}
=12g(t1+t22)2=\frac{1}{2}\, g\left(\frac{t_{1}+t_{2}}{2}\right)^{2}
=12g(t1+t2)24=\frac{1}{2} \,g \cdot \frac{\left(t_{1}+t_{2}\right)^{2}}{4}
Hmax=18g(t1+t2)2m\Rightarrow \,\, H_{\max }=\frac{1}{8}\, g \cdot\left(t_{1}+t_{2}\right)^{2} m