Solveeit Logo

Question

Physics Question on projectile motion

A body is projected horizontally from the top of a tower of height 180m180\, m with a velocity of 20ms120 \, ms^{-1}. If acceleration due to gravity is 10ms210 \, ms^{-2} then match the following. List-IList-II
AVelocity of the body after 1 second (in ms1ms^{-1})
BHorizontal displacement of the body after 1 second (in meters)
CVertical displacement of the body after 1 second (in meters)
DVertical velocity of the body after 1 second (in ms1ms^{-1})
A

(A) - (IV) ,(B) - (II), (C) - (III) ,(D) - (I)

B

(A) - (I), (B) - (II) ,(C) - (III) ,(D) - (IV)

C

(A) - (IV) ,(B) - (II) ,(C) - (I) ,(D) - (III)

D

(A) - (II), (B) - (IV) ,(C) - (I) ,(D) - (III)

Answer

(A) - (IV) ,(B) - (II) ,(C) - (I) ,(D) - (III)

Explanation

Solution

Given, initial horizontal component of velocity,
ux=20m/su_{x}=20\, m / s
Initial vertical component of velocity,
uy=0u_{y}=0
Acceleration due to gravity,
g=ay=10m/s2g=a_{y}=10\, m / s ^{2}
So, horizontal component of velocity after 1s1\, s.
vx=ux+axtv_{x} =u_{x}+a_{x} t
=20+0=20m/s=20+0=20\, m / s
and vertical component of velocity after 1s1\, s,
vy=uy+aytv_{y} =u_{y}+a_{y} t
=0+10×1=0+10 \times 1
=10m/s=10\, m / s
Horizontal displacement after 1s1\, s,
sx=uxt+12axt2s_{x}=u_{x} t+\frac{1}{2} a_{x} t^{2}
=20×1+0=20m=20 \times 1+0=20\, m
Vertical displacement after 1s1\, s,
sy=uyt+12ayt2s_{y} =u_{y} t+\frac{1}{2} a_{y} t^{2}
=0+12×10×(1)2=5m=0+\frac{1}{2} \times 10 \times(1)^{2}=5\, m
Resultant velocity after 1s1\, s,
v=vx2+vy2v =\sqrt{v_{x}^{2}+v_{y}^{2}}
=(20)2+(10)2=400+100=500=\sqrt{(20)^{2}+(10)^{2}}=\sqrt{400+100}=\sqrt{500}
=22.36=22.4m/s=22.36=22.4\, m / s